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Abstract 

Efficient summation of multiple operands in parallel is a critical aspect of various digital 

signal processing units. To accelerate this process, high compression ratio counters and 

compressors are indispensable. This study introduces a novel approach employing fast 

saturated binary counters and exact/approximate (4:2) compressors based on sorting 

networks. The inputs of the counter are asymmetrically divided into two groups and 

processed through sorting networks to generate reordered sequences, represented by one-hot 

code sequences. Through the establishment of three specific Boolean equations between the 

reordered and one-hot code sequences, the output Boolean expressions of the counter are 

significantly simplified. Simulation results demonstrate the superior performance of the 

proposed method compared to conventional approaches. 

Keywords: Binary Counter, Exact/Approximate 4:2 Compressor, Multiplier, One-Hot Code, 

Sorting Network. 

1. Introduction 

The summation of multiple operands is 

widely used in various digital signal 

processing (DSP) units and constitutes a 

part of the critical path. A basic multiplier 

circuit adds all the partial products up with 

the Wallace Tree structure [1], whose 

performance is the bottleneck of the basic 

multiplier. Public-key cryptosystems, such 

as RSA and elliptic curve cryptography 

(ECC), use a big number multiplier based 

on the Toom-Cook [4] or Karatsuba 

algorithm [3] to construct modular 

multipliers. Many papers have studied 

these two algorithms and implemented 

them with hardware. In the papers, such as 

[5], many parts of the circuit utilize the 

summation of multiple operands. Fully 

homomorphic encryption (FHE) is a post-

quantum cryptosystem that provides strong 

security in cloud computing, and it 

urgently needs number theoretic transform 

(NTT) [6] to accelerate large number 

multiplication and polynomial 

multiplication. In some high radix [6] NTT 

implementations, the core processing unit 

is composed of the summation of multiple 

operands. The most famous method of 

multiple operands summation is the 

Wallace tree structure [1] and its improved 

method reduced Wallace tree [2]. These 

methods use full adders as (3,2) counters 

to accelerate the summation, resulting in 

logarithmic time consumption. This type 

of structure is also called carry–save 

structure. Since then, many papers have 

discussed how to construct a more time-

efficient structure to accelerate the 

summation, such as [7]–[12]. The main 

idea is to construct a counter or a 

compressor with a higher compression 

ratio than the (3,2) counter by considering 

more bits at the same weight.  
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The compressors compress n rows into 2 

rows by considering the carry bits between 

adjacent columns. Some papers have 

discussed (4,2) [8], (5,2) [9], and (7,2) [16] 

compressors, which compress four, five, or 

seven rows into two rows, respectively. 

However, they are still in the framework 

of full adders, which utilizes “XOR” gates 

as basic units, and their logical expressions 

are very difficult to simplify. The counters 

compress n rows into log2n rows. Some 

papers have discussed (4,3), (5,3), and 

(6,3) [10] and even (7,3) [11] and (15,4) 

[12] counters. They count the number of 

“1” s in the inputs. If a counter is a 

saturated counter, whose compressed 

results just right represent all the number 

of “1” s in the inputs, its compression 

efficiency achieves the limitation. The 

designs in [10] are all unsaturated and use 

too many “XOR” gates. Saturated counters 

are the main topics in this article. For 

example, (7,3) counter is a saturated 

counter because a 3-bit number can just 

right represent 0–7. Fritz and Fam [11] 

proposed a (6,3) counter that is constructed 

with a symmetric stacking structure. It is 

very fast compared with other designs but 

unsaturated. Then, Fritz and Fam [11] 

simply use a MUX on the critical path to 

construct a saturated (7,3) counter that 

affects the speed. Satish and Pande [17] 

reduce the (6:3) counter proposed in [11] 

to a (5:3) counter and combine three (5:3) 

counter into a (15:4) counter. However, 

this method is inefficient. Approximate 

multipliers are widely used in many error 

tolerant fields, such as digital image 

processing [18] and finite impulse 

response (FIR) filter [24], to accelerate the 

multiplication. Manikantta Reddy et al. 

[21] and Zervakis et al. [23] use 

approximate booth encoding and partial 

product perforation to get an approximate 

multiplier. Satish and Pande [17], Strollo 

et al. [18], Akbari et al. [20], and 

Venkatachalam and Ko [22] have 

discussed about approximate (4:2) 

compressors that can be used in 

approximate multipliers. The high-speed 

approximate (4:2) compressors in [18] are 

based on the symmetric stacking structure 

[11]. 

2. Proposed Method 

2.1 Sorting Network Working Principle  

The typical three- and four-way sorting 

networks are shown in Fig. 1. Each 

vertical line represents a sorter that has 

two data inputs and two data outputs, and 

all data are 1-bit numbers. The sorter 

always puts the larger input up, the smaller 

one down. In Fig. 1, This work considers 

an input example: sequence [0, 1, 1, 1] 

represents the input of four-way sorting 

network (4 SN), and sequence [0, 1, 1] 

represents the input of three-way sorting 

network (3 SN).  

 

Fig 1. Three- and four-way sorting 

networks. 
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Fig.2. Two-input binary sorter 

For both 4 SN and 3 SN, the input 

sequences are reordered in the form of the 

larger number at the top and the smaller 

number at the bottom after three layers of 

sorter. 

Sorter for 1-Bit Data: As mentioned 

above, the sorter reorders two inputs 

according to numerical magnitudes. As for 

two 1-bit data, the logical circuit illustrated 

in Fig. 3 can sort them easily. This means 

that a sorter consumes one layer of two-

input basic logic gates, and the three- and 

four-way sorting networks both consume 

three layers of two-input basic logic gates. 

2.2. Proposed (7,3) counter  

This work constructs an efficient (7,3) 

counter. As the main comparison object, 

this work first briefly reviews the design 

in. Fritz and Fam proposed a very fast 

(6,3) counter with a symmetric stacking 

structure, and they constructed a (7,3) 

saturated counter on the basis of this (6,3) 

counter. Although it is the fastest 

compared to other (7,3) counter designs, 

its delay performance is worse because of 

simply introducing a MUX on the critical 

path without any optimization. To solve 

the problem, this work proposes this 

method of directly construct a (7,3) 

counter. Unlike the symmetric stacking 

structure, this work starts with two sorting 

networks asymmetrically, as illustrated in 

Fig. 2. By generating one-hot code 

sequences, this work establishes three 

special Boolean equations [see (2), (13), 

and (15), which significantly simplifies the 

Boolean expressions related to outputs. 

Some Characteristics of Sorting 

Network: This work summarizes two 

characteristics of sorting networks. First, 

as shown in Fig. 4, due to the fact that “1” 

is bigger than “0,” all the “1”s are at the 

top of the sequence if there exist “1”s, and 

all the “0”s are at the bottom of the 

sequence if there exist “0”s. If there exist 

both “1” s and “0” s, there must be a 

position in the reordered sequence where 

there is the junction of “1” and “0.” If 

there are only “1” s or “0” s, this work can 

manage the sequence by padding fixed one 

bit “1” at the top and one bit “0” at the 

bottom of the reordered sequence to make 

sure that 0,1-junction always exits. 

 

Fig.3. Definition of a sequence. 

 

Fig.4. One-hot code generation circuit 

Second, the reordered sequence has the 

same total number of “1” s and “0” s as the 

original sequence (the inputs of two 

sorting networks). Although the padded 

“1” would influence the total number of 
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“1” s in the padded sequence, it is fixed, so 

This work ignore it while counting. 

One-Hot Code Generation: 

1) Asymmetric Prereorder: As illustrated 

in Fig. 2, both three- and four-way sorting 

networks require three layers of binary 

sorter (the two binary sorters on the same 

layer in fourway sorting network can be 

calculated in parallel). Each layer of binary 

sorters consumes one basic two-input 

logical gate layer, as shown in Fig. 3. This 

means that the time consumed by the 

three- and four-way sorting networks is 

almost the same. Based on this, this work 

divides the seven inputs of a (7,3) counter 

into two parts. One part contains 4 bits, 

while the other contains 3 bits. 

2) Find 0,1-Junction and One-Hot Code 

Sequence: As shown in Fig. 4, the 0,1-

junction can solely represent the reordered 

sequence under the promise of the 

extended fixed “0” and “1.” Notice that the 

position of the 0,1-junction must be 1,0 

from left to right. Therefore, this work still 

utilize the four-way sorting network as an 

example, and then, This work have the 

structure in Fig. 5. 

Table 1: Truth table of (7,3) counter 

outputs 

 

This structure uses a Boolean expression 

(ABbar) to obtain a new sequence P0–P4. 

Because there is one and only one 0,1-

junction in the reordered and extended 

sequence, there is one and only one “1” in 

sequence P0–P4. This means that sequence 

P0–P4 is one-hot code that satisfies (“|” 

represents “OR” and “&” represents 

“AND”) 

 

If the sequence elements (P0–P4) are 

randomly divided into two groups, such as 

P0, P2, and P4 as group 1 and P1 and P3 

as group 2, then, because of one and only 

one “1” in the sequence, This work have 

 

All results of random separation satisfy 

this rule. This work also applies the same 

method on the three-way sorting network’s 

output sequence and get the one-hot code 

sequence Q0–Q3. This sequence also 

satisfies the rule above. 

Output Generation: 

1) Basic Output Generation: Now, this 

work has two sequences P and Q. P0 = 1 

means that there is no “1” in the input 

sequence of four-way sorting network, P1 

= 1 represents one “1” in it, and Pi = 1 

represents i “1” s in it and so is the 

sequence Q. 

Here are some symbol conventions. The 

outputs of (7,3) counter is denoted as C2, 

C1, and S, and C2 has the most significant 

weight, while S has the lowest weight. 

Table I shows the total numbers of “1”s 

(“Num” column in the table) in the input 7 

bits corresponding to outputs, i.e., Num = 

2
2
C2 + 2

1
C1 + 2

0
S. The sequence output 

from four-way sorting network is denoted 

as sequence H, including H1–H4 from left 

to right in Fig. 4. The sequence output 

from three-way sorting network is denoted 

as sequence I, including I1–I3 from left to 

right. 
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According to Table I, This work know that 

at least four “1”s are in the input sequence 

of the (7,3) counter when C2 = 1. As 

discussed before, P4 = 1 means that four 

“1”s are in sequence H (also in the input 

sequence of 4 SN because sorting network 

has no effect on total number of “1”s), and 

Q0 = 1 means that no “1” is in sequence I. 

Thus, P4&Q0 = 1 means that there are 

totally 4 + 0 = 4 “1”s in the input 7 bits. 

As a result of this type of representation, 

C2 is equal to 1 when the summation of 

subscripts of P and Q is no less than 4. In 

this way, C2 can be expressed as 

 

Notice that the sequence Q, with the same 

method, satisfies 

 

 

Fig.5. C1 generating circuit. 

 

As for C1, the sum of subscripts of 

sequences P and Q equals 2, 3, 6, and 7; 

then, C1 = 1 (see Table I). Thus, This work 

get the following equation: 

 Note that 

 

Equation is reduced to the following 

equation: 

 
construct two multichannel selection 

constructions. Via the circuit shown in Fig. 

6, C1 can be calculated time efficiently. As 

for S, it can be easily obtained by the 

following equation: S = (P1|P3) ⊕ 

(Q1|Q3) 

 

where ⊕ denots “XOR.”  

2) Further Optimization: This work have 

got two sequences H1–H4 and I1–I3. 

Here, This work extend sequence H1–H4 

by H0 (denotes the fixed “1” in Fig. 4) and 

H5 (denotes the fixed “0”). Do the same 

for sequence I. I0 denotes the fixed “1,” 

and I4 denotes the fixed “0.” Thus, This 

work have the following equation:  

 

In addition, This work notice that, when 

subsequences selected from the sequence 

Q or P are given, if their subscripts are 

successive (P1, P2, and P3 for example), 

the result of “OR” them up can be easily 

expressed by sequence I or H (P1|P2|P3 = 

H1&H4 for example). Thus, the Boolean 

equation (12) is generalized as (13). “Σ” in 

(13) represents continuous “OR”  
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Fig.6. Overall (7,3) counter circuit. 

Based on this, (10) is simplified to (14), 

which can also be calculated from the 

circuit in Fig. 6 

 

There is another trick for sequences H and 

I. Because H0–H5 are all in order, this 

means that, if Hi = 1 (i = 0, 1, 2, 3, 4, 5), 

then, for every j < i, Hj = 1 always holds 

and so is the sequence Q. Then, this work 

gets the following equation: 

 

Note that H0 = I0 = 1 and H5 = I4 = 0 

always hold; This work can simplify (3) as 

Overall Structure: 

The overall architecture is shown in Fig. 7. 

It is obvious that the paths from sequences 

H and I to C2, C1, and S are almost 

independent. This increases the parallelism 

of the circuit. However, as will be 

discussed later, the area of the proposed 

design will not increase with the 

parallelism. In fact, it decreases. The main 

reason for the area reduction is (2), (13), 

and (15), which significantly simplifies the 

output Boolean expressions.  

 

Fig.7. Eight-way sorting network 

2.3 Compression Ratio Counters 

This work has implemented an efficient 

(7,3) saturated counter, but, in some 

applications, such as high radix NTT [6] 

and large number multiplication [5], a 

(15,4) even (31,5) saturated counter will 

be useful. This work utilizes the above 
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methods to construct (15,4) and (31,5) 

saturated counters and give them a brief 

but clear description. 

Construct (15,4) Counter: 

1) Seven- and Eight-Way Sorting 

Networks: Fig. 8 shows an eight-way 

sorting network [14]. This sorting network 

consumes six layers of basic logic gates to 

output the result. Removing one bit from 

the eight-way sorting network can obtain a 

seven-way sorting network that also 

consumes six layers of basic logic gates. 

 

The outputs of the eight-way and seven-

way sorting networks are denoted as 

sequence H (includes H1–H8 and extended 

to H0 − H9) and sequence I (includes I1–I7 

and extended to I0–I8), respectively. By 

utilizing A&B logic, this work get the one-

hot code sequences P (P0–P8) and Q (Q0 − 

Q7). These sequences are similar to the 

sequences in (7,3) counter. 

Table 2: Truth table of (15,4) counter 

outputs 

 

 

 

Thus, This work directly give out the key 

equations, as shown in (17)–(19). Note 

that (17) is just an example; this regular 

satisfies all the random separation. The 

symbol “Σ” in (19) represents continuous 

“OR.” 

Boolean Expressions of (15,4) Counter: 

The 4-bit output of the (15,4) counter is 

denoted as C3C2C1 S. Table 3 shows the 

output corresponding to the number of the 

number of “1”s in input sequence. Similar 

to the method by which this work 

constructs the (7,3) counter, first, establish 

logic equations between C3C2C1 S and 

sequences P and Q through the sum of the 

subscripts. Second, utilize (17)–(19) to 

optimize it. Then This work get (20)–(23). 

Because the original Boolean expressions 

are too long, here, This work express them 

with the Verilog syntax (especially ternary 

operator: “ab:c”). 

 

Overall Structure: 

The overall structure is shown in Fig. 9. 

“HI BUS” in Fig. 9 is a module, which 

mainly contains AB logic gates for 

calculating the related signals in (20)–(23). 

Signals R1 − R8 are related to (23). In 

(23), seven “AND” operations are needed 

between sequence H and sequence I, and 
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R1–R8 denote the results of “AND”, i.e., 

R1 = H1&I7, R7 = H7&I1, and R8 = H8. 

 

Fig.8. Overall (15,4) counter circuit 

The critical path is from the input to C2, 

which consumes nine layers of 2IBLGs 

and a MUX. This is less than the structure 

in that needs six 2IBLGs and four XOR 

gates. Besides that, the proposed design 

needs 150 2IBLGs (the same calculation 

method as in Table II), while the design in 

[12] needs 135 2IBLGs. This area mainly 

comes from eight- and seven-way sorting 

networks, which consumes a total number 

of 84 2IBLGs. However, as will be 

discussed in Section VI.B, this design is 

flexible enough to be applied in high-

performance or area-efficient scenarios. 

Construct (31,5) Counter:  

A high compression ratio (31,5) counter is 

also constructed with the proposed 

method. There are still three steps. First, 

divide the 31 bits into two parts. The two 

parts contain 16 and 15 bits, respectively. 

Then, put the two parts into two sorting 

networks of corresponding sizes. The 

outputs of sorting networks are extended 

by the fixed “0” and the fixed “1,” which 

are denoted as H0–H17 and I0–I16, 

respectively. Second, one-hot code 

sequences P0–P16 and Q0–Q15 are 

generated by using the AB Boolean 

expression. Three trick Boolean 

expressions between reordered sequences 

and one hot code sequences are 

established, which has the same form as 

(17)–(19). Finally, generate and simplify 

the output expressions. 

 

Fig. 9. 4:2 compressor combined by full 

adders. 

This work directly give out the outputs 

C4C3C2C1 S in (24)–(28), as shown at the 

bottom of the page. The independence of 

the equations increases the parallelism, so 

the proposed (31,5) counter is fast. The 

critical path is from input to C2, which 

consumes 13 layers of 2IBLGs and a 

MUX. This work observes the output 

equations of the proposed (7,3), (15,4), 

and (31,5) counters carefully, this work 

will find that, when This work doubled the 

input bit number from 7 to 15 (or from 15 

to 31), the length of the equations 

increases, but the logic layers 

corresponding to circuits do not increase 

too much because of the abovementioned 

parallelism 

2.4 Exact/approximate (4:2) 

compressors: 

Exact (4:2) Compressor: 

A (4:2) compressor has the same logical 

function, as shown in Fig. 10. To construct 
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a high-speed (4:2) compressor, this work 

also introduces sorting networks. The four-

way sorting network, as shown in Fig. 2, 

needs three stages to sort four inputs, and 

This work observed that the last stage of 

the 4-SN just sorts the two data in the 

middle, which means that the data at the 

top and the data at the bottom are the 

maximum and the minimum of the four 

data, respectively. This work redisplayed 

the first two stages of a 4-SN in Fig. 11 as 

“Half Sort,” and the results of the “Half 

Sort” are denoted as A, B, C, and D. Since 

A and D are the maximum and minimum 

data, respectively, the sequence [A, B, D] 

is already sorted completely. Then, the 

summation of A, B, and D can be 

calculated with the following equation: 

 

 

 

Fig.10. Proposed exact (4:2) compressor 

The summation of s0, Cin, and C is 

calculated with a “Full Adder” (as shown 

in Fig. 11), which has been modified. 

Equation (30) describes the “Full Adder” 

Approximate (4:2) Compressors: 

This work also uses the name “Yang1” and 

“Yang2” in [18] to represent the 

approximate (4:2) compressors, which has 

1 and 2 errors, respectively, as proposed in 

[19]. This work names the approximate 

(4:2) compressors proposed in [18] with 

one and two errors as “Strollo1” and 

“Strollo2,” respectively.  

 

Fig.11. Proposed approximate (4:2) 

compressor with one error. 

 

Fig. 12. Proposed approximate (4:2) 

compressor with two errors 

In Fig. 12, This work constructs an 

approximate (4:2) compressor based on 
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sorting network. D is one of the outputs of 

4SN, and it is the minimum one of the 

inputs. By simply discarding D, the 

structure is constructed, and it has the 

same logical function as that “Yang1” and 

“Strollo1” have 

 

To construct a faster approximate (4:2) 

compressor, a sorter is discarded in 4 SN, 

as shown in Fig. 13. Although it is 

uncertain that the sequence [A, h1, h2] is 

sorted completely, this work assume that 

the sequence is sorted completely. In order 

to correct the deviation introduced by 

incomplete sorting, the output expressions 

are modified. 

3. Simulation and synthesis analysis 

 

Fig. 13: Top module for 15:4 counter 

 

 

Fig 14: RTL schematic for 15:4 counter 

 

Fig 15: Top module for 7:3 counter 

 

Fig 16: RTL schematic for 7:3 counters 
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Fig 17: simulation result for 15:4 counter 

 

Fig 18: simulation result for 7:3 counter 

 

Fig 19: synthesis report for Delay gates in 

existing 15:3 counter 

 

Fig 20: synthesis report for Delay in 

proposed 15:4 counter 

4. Conclusion 

The summation of multiple operands in 

parallel forms part of the critical path in 

various digital signal processing units. To 

speed up the summation, high compression 

ratio counters and compressors are 

necessary. This work presents a novel 

method of fast saturated binary counters 

and exact/approximate (4:2) compressors 

based on the sorting network. The inputs 

of the counter are asymmetrically divided 

into two groups and fed into sorting 

networks to generate reordered sequences, 

which can be solely represented by one-

hot code sequences. Between the reordered 

sequence and the one-hot code sequence, 

three special Boolean equations are 

established, which can significantly 

simplify the output Boolean expressions of 

the counter. Both simulation and synthesis 

were done using Xilinx 14.5. Using the 

above method, this work construct and 

further optimize the (7,3) counter that can 

perform 27.0%, 26.2%, and 52.0% better 

in maximum than other designs in delay, 

area-delay product, and power-delay 

product, respectively. Similarly, the (15,4) 

counter is constructed, and it achieves 

approximately 35.3% shorter delay, while 

it significantly consumes less power and 

area.  
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