

4149

High-Speed Binary Counters and Compressors: A Sorting Network

Approach for Enhanced Digital Signal Processing

Gangone Swathi
1
, Ramadevi Jaida

2
, Ramakrishna B

3

1,2,3
Assistant Professor, Department of ECE, Malla Reddy Engineering College and

Management Sciences, Hyderabad, Telangana.

Abstract

Efficient summation of multiple operands in parallel is a critical aspect of various digital

signal processing units. To accelerate this process, high compression ratio counters and

compressors are indispensable. This study introduces a novel approach employing fast

saturated binary counters and exact/approximate (4:2) compressors based on sorting

networks. The inputs of the counter are asymmetrically divided into two groups and

processed through sorting networks to generate reordered sequences, represented by one-hot

code sequences. Through the establishment of three specific Boolean equations between the

reordered and one-hot code sequences, the output Boolean expressions of the counter are

significantly simplified. Simulation results demonstrate the superior performance of the

proposed method compared to conventional approaches.

Keywords: Binary Counter, Exact/Approximate 4:2 Compressor, Multiplier, One-Hot Code,

Sorting Network.

1. Introduction

The summation of multiple operands is

widely used in various digital signal

processing (DSP) units and constitutes a

part of the critical path. A basic multiplier

circuit adds all the partial products up with

the Wallace Tree structure [1], whose

performance is the bottleneck of the basic

multiplier. Public-key cryptosystems, such

as RSA and elliptic curve cryptography

(ECC), use a big number multiplier based

on the Toom-Cook [4] or Karatsuba

algorithm [3] to construct modular

multipliers. Many papers have studied

these two algorithms and implemented

them with hardware. In the papers, such as

[5], many parts of the circuit utilize the

summation of multiple operands. Fully

homomorphic encryption (FHE) is a post-

quantum cryptosystem that provides strong

security in cloud computing, and it

urgently needs number theoretic transform

(NTT) [6] to accelerate large number

multiplication and polynomial

multiplication. In some high radix [6] NTT

implementations, the core processing unit

is composed of the summation of multiple

operands. The most famous method of

multiple operands summation is the

Wallace tree structure [1] and its improved

method reduced Wallace tree [2]. These

methods use full adders as (3,2) counters

to accelerate the summation, resulting in

logarithmic time consumption. This type

of structure is also called carry–save

structure. Since then, many papers have

discussed how to construct a more time-

efficient structure to accelerate the

summation, such as [7]–[12]. The main

idea is to construct a counter or a

compressor with a higher compression

ratio than the (3,2) counter by considering

more bits at the same weight.

4150

The compressors compress n rows into 2

rows by considering the carry bits between

adjacent columns. Some papers have

discussed (4,2) [8], (5,2) [9], and (7,2) [16]

compressors, which compress four, five, or

seven rows into two rows, respectively.

However, they are still in the framework

of full adders, which utilizes “XOR” gates

as basic units, and their logical expressions

are very difficult to simplify. The counters

compress n rows into log2n rows. Some

papers have discussed (4,3), (5,3), and

(6,3) [10] and even (7,3) [11] and (15,4)

[12] counters. They count the number of

“1” s in the inputs. If a counter is a

saturated counter, whose compressed

results just right represent all the number

of “1” s in the inputs, its compression

efficiency achieves the limitation. The

designs in [10] are all unsaturated and use

too many “XOR” gates. Saturated counters

are the main topics in this article. For

example, (7,3) counter is a saturated

counter because a 3-bit number can just

right represent 0–7. Fritz and Fam [11]

proposed a (6,3) counter that is constructed

with a symmetric stacking structure. It is

very fast compared with other designs but

unsaturated. Then, Fritz and Fam [11]

simply use a MUX on the critical path to

construct a saturated (7,3) counter that

affects the speed. Satish and Pande [17]

reduce the (6:3) counter proposed in [11]

to a (5:3) counter and combine three (5:3)

counter into a (15:4) counter. However,

this method is inefficient. Approximate

multipliers are widely used in many error

tolerant fields, such as digital image

processing [18] and finite impulse

response (FIR) filter [24], to accelerate the

multiplication. Manikantta Reddy et al.

[21] and Zervakis et al. [23] use

approximate booth encoding and partial

product perforation to get an approximate

multiplier. Satish and Pande [17], Strollo

et al. [18], Akbari et al. [20], and

Venkatachalam and Ko [22] have

discussed about approximate (4:2)

compressors that can be used in

approximate multipliers. The high-speed

approximate (4:2) compressors in [18] are

based on the symmetric stacking structure

[11].

2. Proposed Method

2.1 Sorting Network Working Principle

The typical three- and four-way sorting

networks are shown in Fig. 1. Each

vertical line represents a sorter that has

two data inputs and two data outputs, and

all data are 1-bit numbers. The sorter

always puts the larger input up, the smaller

one down. In Fig. 1, This work considers

an input example: sequence [0, 1, 1, 1]

represents the input of four-way sorting

network (4 SN), and sequence [0, 1, 1]

represents the input of three-way sorting

network (3 SN).

Fig 1. Three- and four-way sorting

networks.

4151

Fig.2. Two-input binary sorter

For both 4 SN and 3 SN, the input

sequences are reordered in the form of the

larger number at the top and the smaller

number at the bottom after three layers of

sorter.

Sorter for 1-Bit Data: As mentioned

above, the sorter reorders two inputs

according to numerical magnitudes. As for

two 1-bit data, the logical circuit illustrated

in Fig. 3 can sort them easily. This means

that a sorter consumes one layer of two-

input basic logic gates, and the three- and

four-way sorting networks both consume

three layers of two-input basic logic gates.

2.2. Proposed (7,3) counter

This work constructs an efficient (7,3)

counter. As the main comparison object,

this work first briefly reviews the design

in. Fritz and Fam proposed a very fast

(6,3) counter with a symmetric stacking

structure, and they constructed a (7,3)

saturated counter on the basis of this (6,3)

counter. Although it is the fastest

compared to other (7,3) counter designs,

its delay performance is worse because of

simply introducing a MUX on the critical

path without any optimization. To solve

the problem, this work proposes this

method of directly construct a (7,3)

counter. Unlike the symmetric stacking

structure, this work starts with two sorting

networks asymmetrically, as illustrated in

Fig. 2. By generating one-hot code

sequences, this work establishes three

special Boolean equations [see (2), (13),

and (15), which significantly simplifies the

Boolean expressions related to outputs.

Some Characteristics of Sorting

Network: This work summarizes two

characteristics of sorting networks. First,

as shown in Fig. 4, due to the fact that “1”

is bigger than “0,” all the “1”s are at the

top of the sequence if there exist “1”s, and

all the “0”s are at the bottom of the

sequence if there exist “0”s. If there exist

both “1” s and “0” s, there must be a

position in the reordered sequence where

there is the junction of “1” and “0.” If

there are only “1” s or “0” s, this work can

manage the sequence by padding fixed one

bit “1” at the top and one bit “0” at the

bottom of the reordered sequence to make

sure that 0,1-junction always exits.

Fig.3. Definition of a sequence.

Fig.4. One-hot code generation circuit

Second, the reordered sequence has the

same total number of “1” s and “0” s as the

original sequence (the inputs of two

sorting networks). Although the padded

“1” would influence the total number of

4152

“1” s in the padded sequence, it is fixed, so

This work ignore it while counting.

One-Hot Code Generation:

1) Asymmetric Prereorder: As illustrated

in Fig. 2, both three- and four-way sorting

networks require three layers of binary

sorter (the two binary sorters on the same

layer in fourway sorting network can be

calculated in parallel). Each layer of binary

sorters consumes one basic two-input

logical gate layer, as shown in Fig. 3. This

means that the time consumed by the

three- and four-way sorting networks is

almost the same. Based on this, this work

divides the seven inputs of a (7,3) counter

into two parts. One part contains 4 bits,

while the other contains 3 bits.

2) Find 0,1-Junction and One-Hot Code

Sequence: As shown in Fig. 4, the 0,1-

junction can solely represent the reordered

sequence under the promise of the

extended fixed “0” and “1.” Notice that the

position of the 0,1-junction must be 1,0

from left to right. Therefore, this work still

utilize the four-way sorting network as an

example, and then, This work have the

structure in Fig. 5.

Table 1: Truth table of (7,3) counter

outputs

This structure uses a Boolean expression

(ABbar) to obtain a new sequence P0–P4.

Because there is one and only one 0,1-

junction in the reordered and extended

sequence, there is one and only one “1” in

sequence P0–P4. This means that sequence

P0–P4 is one-hot code that satisfies (“|”

represents “OR” and “&” represents

“AND”)

If the sequence elements (P0–P4) are

randomly divided into two groups, such as

P0, P2, and P4 as group 1 and P1 and P3

as group 2, then, because of one and only

one “1” in the sequence, This work have

All results of random separation satisfy

this rule. This work also applies the same

method on the three-way sorting network’s

output sequence and get the one-hot code

sequence Q0–Q3. This sequence also

satisfies the rule above.

Output Generation:

1) Basic Output Generation: Now, this

work has two sequences P and Q. P0 = 1

means that there is no “1” in the input

sequence of four-way sorting network, P1

= 1 represents one “1” in it, and Pi = 1

represents i “1” s in it and so is the

sequence Q.

Here are some symbol conventions. The

outputs of (7,3) counter is denoted as C2,

C1, and S, and C2 has the most significant

weight, while S has the lowest weight.

Table I shows the total numbers of “1”s

(“Num” column in the table) in the input 7

bits corresponding to outputs, i.e., Num =

2
2
C2 + 2

1
C1 + 2

0
S. The sequence output

from four-way sorting network is denoted

as sequence H, including H1–H4 from left

to right in Fig. 4. The sequence output

from three-way sorting network is denoted

as sequence I, including I1–I3 from left to

right.

4153

According to Table I, This work know that

at least four “1”s are in the input sequence

of the (7,3) counter when C2 = 1. As

discussed before, P4 = 1 means that four

“1”s are in sequence H (also in the input

sequence of 4 SN because sorting network

has no effect on total number of “1”s), and

Q0 = 1 means that no “1” is in sequence I.

Thus, P4&Q0 = 1 means that there are

totally 4 + 0 = 4 “1”s in the input 7 bits.

As a result of this type of representation,

C2 is equal to 1 when the summation of

subscripts of P and Q is no less than 4. In

this way, C2 can be expressed as

Notice that the sequence Q, with the same

method, satisfies

Fig.5. C1 generating circuit.

As for C1, the sum of subscripts of

sequences P and Q equals 2, 3, 6, and 7;

then, C1 = 1 (see Table I). Thus, This work

get the following equation:

 Note that

Equation is reduced to the following

equation:

construct two multichannel selection

constructions. Via the circuit shown in Fig.

6, C1 can be calculated time efficiently. As

for S, it can be easily obtained by the

following equation: S = (P1|P3) ⊕

(Q1|Q3)

where ⊕ denots “XOR.”

2) Further Optimization: This work have

got two sequences H1–H4 and I1–I3.

Here, This work extend sequence H1–H4

by H0 (denotes the fixed “1” in Fig. 4) and

H5 (denotes the fixed “0”). Do the same

for sequence I. I0 denotes the fixed “1,”

and I4 denotes the fixed “0.” Thus, This

work have the following equation:

In addition, This work notice that, when

subsequences selected from the sequence

Q or P are given, if their subscripts are

successive (P1, P2, and P3 for example),

the result of “OR” them up can be easily

expressed by sequence I or H (P1|P2|P3 =

H1&H4 for example). Thus, the Boolean

equation (12) is generalized as (13). “Σ” in

(13) represents continuous “OR”

4154

Fig.6. Overall (7,3) counter circuit.

Based on this, (10) is simplified to (14),

which can also be calculated from the

circuit in Fig. 6

There is another trick for sequences H and

I. Because H0–H5 are all in order, this

means that, if Hi = 1 (i = 0, 1, 2, 3, 4, 5),

then, for every j < i, Hj = 1 always holds

and so is the sequence Q. Then, this work

gets the following equation:

Note that H0 = I0 = 1 and H5 = I4 = 0

always hold; This work can simplify (3) as

Overall Structure:

The overall architecture is shown in Fig. 7.

It is obvious that the paths from sequences

H and I to C2, C1, and S are almost

independent. This increases the parallelism

of the circuit. However, as will be

discussed later, the area of the proposed

design will not increase with the

parallelism. In fact, it decreases. The main

reason for the area reduction is (2), (13),

and (15), which significantly simplifies the

output Boolean expressions.

Fig.7. Eight-way sorting network

2.3 Compression Ratio Counters

This work has implemented an efficient

(7,3) saturated counter, but, in some

applications, such as high radix NTT [6]

and large number multiplication [5], a

(15,4) even (31,5) saturated counter will

be useful. This work utilizes the above

4155

methods to construct (15,4) and (31,5)

saturated counters and give them a brief

but clear description.

Construct (15,4) Counter:

1) Seven- and Eight-Way Sorting

Networks: Fig. 8 shows an eight-way

sorting network [14]. This sorting network

consumes six layers of basic logic gates to

output the result. Removing one bit from

the eight-way sorting network can obtain a

seven-way sorting network that also

consumes six layers of basic logic gates.

The outputs of the eight-way and seven-

way sorting networks are denoted as

sequence H (includes H1–H8 and extended

to H0 − H9) and sequence I (includes I1–I7

and extended to I0–I8), respectively. By

utilizing A&B logic, this work get the one-

hot code sequences P (P0–P8) and Q (Q0 −

Q7). These sequences are similar to the

sequences in (7,3) counter.

Table 2: Truth table of (15,4) counter

outputs

Thus, This work directly give out the key

equations, as shown in (17)–(19). Note

that (17) is just an example; this regular

satisfies all the random separation. The

symbol “Σ” in (19) represents continuous

“OR.”

Boolean Expressions of (15,4) Counter:

The 4-bit output of the (15,4) counter is

denoted as C3C2C1 S. Table 3 shows the

output corresponding to the number of the

number of “1”s in input sequence. Similar

to the method by which this work

constructs the (7,3) counter, first, establish

logic equations between C3C2C1 S and

sequences P and Q through the sum of the

subscripts. Second, utilize (17)–(19) to

optimize it. Then This work get (20)–(23).

Because the original Boolean expressions

are too long, here, This work express them

with the Verilog syntax (especially ternary

operator: “ab:c”).

Overall Structure:

The overall structure is shown in Fig. 9.

“HI BUS” in Fig. 9 is a module, which

mainly contains AB logic gates for

calculating the related signals in (20)–(23).

Signals R1 − R8 are related to (23). In

(23), seven “AND” operations are needed

between sequence H and sequence I, and

4156

R1–R8 denote the results of “AND”, i.e.,

R1 = H1&I7, R7 = H7&I1, and R8 = H8.

Fig.8. Overall (15,4) counter circuit

The critical path is from the input to C2,

which consumes nine layers of 2IBLGs

and a MUX. This is less than the structure

in that needs six 2IBLGs and four XOR

gates. Besides that, the proposed design

needs 150 2IBLGs (the same calculation

method as in Table II), while the design in

[12] needs 135 2IBLGs. This area mainly

comes from eight- and seven-way sorting

networks, which consumes a total number

of 84 2IBLGs. However, as will be

discussed in Section VI.B, this design is

flexible enough to be applied in high-

performance or area-efficient scenarios.

Construct (31,5) Counter:

A high compression ratio (31,5) counter is

also constructed with the proposed

method. There are still three steps. First,

divide the 31 bits into two parts. The two

parts contain 16 and 15 bits, respectively.

Then, put the two parts into two sorting

networks of corresponding sizes. The

outputs of sorting networks are extended

by the fixed “0” and the fixed “1,” which

are denoted as H0–H17 and I0–I16,

respectively. Second, one-hot code

sequences P0–P16 and Q0–Q15 are

generated by using the AB Boolean

expression. Three trick Boolean

expressions between reordered sequences

and one hot code sequences are

established, which has the same form as

(17)–(19). Finally, generate and simplify

the output expressions.

Fig. 9. 4:2 compressor combined by full

adders.

This work directly give out the outputs

C4C3C2C1 S in (24)–(28), as shown at the

bottom of the page. The independence of

the equations increases the parallelism, so

the proposed (31,5) counter is fast. The

critical path is from input to C2, which

consumes 13 layers of 2IBLGs and a

MUX. This work observes the output

equations of the proposed (7,3), (15,4),

and (31,5) counters carefully, this work

will find that, when This work doubled the

input bit number from 7 to 15 (or from 15

to 31), the length of the equations

increases, but the logic layers

corresponding to circuits do not increase

too much because of the abovementioned

parallelism

2.4 Exact/approximate (4:2)

compressors:

Exact (4:2) Compressor:

A (4:2) compressor has the same logical

function, as shown in Fig. 10. To construct

4157

a high-speed (4:2) compressor, this work

also introduces sorting networks. The four-

way sorting network, as shown in Fig. 2,

needs three stages to sort four inputs, and

This work observed that the last stage of

the 4-SN just sorts the two data in the

middle, which means that the data at the

top and the data at the bottom are the

maximum and the minimum of the four

data, respectively. This work redisplayed

the first two stages of a 4-SN in Fig. 11 as

“Half Sort,” and the results of the “Half

Sort” are denoted as A, B, C, and D. Since

A and D are the maximum and minimum

data, respectively, the sequence [A, B, D]

is already sorted completely. Then, the

summation of A, B, and D can be

calculated with the following equation:

Fig.10. Proposed exact (4:2) compressor

The summation of s0, Cin, and C is

calculated with a “Full Adder” (as shown

in Fig. 11), which has been modified.

Equation (30) describes the “Full Adder”

Approximate (4:2) Compressors:

This work also uses the name “Yang1” and

“Yang2” in [18] to represent the

approximate (4:2) compressors, which has

1 and 2 errors, respectively, as proposed in

[19]. This work names the approximate

(4:2) compressors proposed in [18] with

one and two errors as “Strollo1” and

“Strollo2,” respectively.

Fig.11. Proposed approximate (4:2)

compressor with one error.

Fig. 12. Proposed approximate (4:2)

compressor with two errors

In Fig. 12, This work constructs an

approximate (4:2) compressor based on

4158

sorting network. D is one of the outputs of

4SN, and it is the minimum one of the

inputs. By simply discarding D, the

structure is constructed, and it has the

same logical function as that “Yang1” and

“Strollo1” have

To construct a faster approximate (4:2)

compressor, a sorter is discarded in 4 SN,

as shown in Fig. 13. Although it is

uncertain that the sequence [A, h1, h2] is

sorted completely, this work assume that

the sequence is sorted completely. In order

to correct the deviation introduced by

incomplete sorting, the output expressions

are modified.

3. Simulation and synthesis analysis

Fig. 13: Top module for 15:4 counter

Fig 14: RTL schematic for 15:4 counter

Fig 15: Top module for 7:3 counter

Fig 16: RTL schematic for 7:3 counters

4159

Fig 17: simulation result for 15:4 counter

Fig 18: simulation result for 7:3 counter

Fig 19: synthesis report for Delay gates in

existing 15:3 counter

Fig 20: synthesis report for Delay in

proposed 15:4 counter

4. Conclusion

The summation of multiple operands in

parallel forms part of the critical path in

various digital signal processing units. To

speed up the summation, high compression

ratio counters and compressors are

necessary. This work presents a novel

method of fast saturated binary counters

and exact/approximate (4:2) compressors

based on the sorting network. The inputs

of the counter are asymmetrically divided

into two groups and fed into sorting

networks to generate reordered sequences,

which can be solely represented by one-

hot code sequences. Between the reordered

sequence and the one-hot code sequence,

three special Boolean equations are

established, which can significantly

simplify the output Boolean expressions of

the counter. Both simulation and synthesis

were done using Xilinx 14.5. Using the

above method, this work construct and

further optimize the (7,3) counter that can

perform 27.0%, 26.2%, and 52.0% better

in maximum than other designs in delay,

area-delay product, and power-delay

product, respectively. Similarly, the (15,4)

counter is constructed, and it achieves

approximately 35.3% shorter delay, while

it significantly consumes less power and

area.

References:

[1]. C. S. Wallace, “A suggestion for a fast

multiplier,” IEEE Trans. Electron.

Comput., vol. EC-13, no. 1, pp. 14–17,

Feb. 1964,

doi:10.1109/PGEC.1964.263830.

[2]. R. S. Waters and E. E. Swartzlander,

“A reduced complexity Wallace

multiplier reduction,” IEEE Trans.

Comput., vol. 59, no. 8, pp. 1134–

1137, Aug. 2010, doi:

10.1109/TC.2010.103.

[3]. P. L. Montgomery, “Five, six, and

seven-term karatsuba-like

formulae,”IEEE Trans. Comput., vol.

54, no. 3, pp. 362–369, Mar. 2005,

doi:10.1109/TC.2005.49.

[4]. J. Ding, S. Li, and Z. Gu, “High-speed

ECC processor over NIST prime fields

applied with Toom–Cook

multiplication,” in IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 66,

no. 3, pp. 1003–1016, Mar. 2019,

doi:10.1109/TCSI.2018.2878598.

[5]. R. Liu and S. Li, “A design and

implementation of montgomery

4160

modular multiplier,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS),

Sapporo,Japan, May 2019, pp. 1–4,

doi: 10.1109/ISCAS.2019.8702684.

[6]. W. Wang, X. Huang, N. Emmart, and

C. Weems, “VLSI design of a large-

number multiplier for fully

homomorphic encryption,” in IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 22, no. 9, pp. 1879–1887,

Sep. 2014, doi:

10.1109/TVLSI.2013.2281786.

[7]. S. Asif and Y. Kong, “Analysis of

different architectures of counter based

wallace multipliers,” in Proc. 10th Int.

Conf. Comput.Eng. Syst. (ICCES),

Cairo, Egypt, Dec. 2015, pp. 139–144,

doi:10.1109/ICCES.2015.7393034.

[8]. A. Najafi, B. Mazloom-nezhad, and A.

Najafi, “Low-power and highspeed 4-2

compressor,” in Proc. 36th Int. Conv.

Inf. Commun. Technol.,Electron.

Microelectron. (MIPRO), Opatija,

Croatia, May 2013,pp. 66–69.

[9]. A. Najafi, S. Timarchi, and A. Najafi,

“High-speed energy-efficient 5:2

compressor,” in Proc. 37th Int. Conv.

Inf. Commun. Technol.,

Electron.Microelectron. (MIPRO),

Opatija, Croatia, May 2014, pp. 80–84,

doi:10.1109/MIPRO.2014.6859537.

[10]. S. Asif and Y. Kong, “Design of an

algorithmic wallace multiplier using

high speed counters,” in Proc. 10th Int.

Conf. Comput.Eng. Syst. (ICCES),

Cairo, Egypt, Dec. 2015, pp. 133–138,

doi: 10.1109/ICCES.2015.7393033.

[11]. C. Fritz and A. T. Fam, “Fast binary

counters based on symmetric

stacking,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 25,no.

10, pp. 2971–2975, Oct. 2017,

doi:10.1109/TVLSI.2017.2723475.

[12]. Q. Jiang and S. Li, “A design of

manually optimized (15,4) parallel

counter,” in Proc. Int. Conf. Electron

Devices Solid-State Circuits (EDSSC),

Hsinchu, Taiwan, Oct. 2017, pp. 1–2,

doi:10.1109/EDSSC.2017.8126527.

[13]. M. H. Najafi, D. J. Lilja, M. D.

Riedel, and K. Bazargan, “Low-cost

sorting network circuits using unary

processing,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 26, no.

8, pp. 1471–1480, Aug. 2018,

doi:10.1109/TVLSI.2018.2822300.

[14]. D. E. Knuth, The Art of Computer

Programming: Sorting and

Searching,vol. 3. Reading, MA, USA:

Addison-Wesley, 1973

[15]. M. Mehta, V. Parmar, and E.

Swartzlander, “High-speed multiplier

design using multi-input counter and

compressor circuits,” in Proc.10th

IEEE Symp. Comput. Arithmetic,

Grenoble, France, Jun. 1991, pp. 43–

50, doi: 10.1109/ARITH.1991.145532.

[16]. A. Fathi, B. Mashoufi, and S.

Azizian, “Very fast, high-performance

5-2 and 7-2 compressors in CMOS

process for rapid parallel

accumulations,”IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol.

28, no. 6, pp. 1403–1412, Jun. 2020,

doi: 10.1109/TVLSI.2020. 2983458.

[17]. T. Satish and K. S. Pande,

“Multiplier using NAND based

compressors,”in Proc. 3rd Int. Conf.

Electron., Mater. Eng. Nano-Technol.

(IEMENTech), Kolkata, India, Aug.

2019, pp. 1–6,

doi:10.1109/IEMENTech48150.2019.8

981067.

[18]. A. G. M. Strollo, E. Napoli, D. De

Caro, N. Petra, and G. D. Meo,

“Comparison and extension of

approximate 4-2 compressors for low-

power approximate multipliers,” IEEE

Trans. Circuits Syst. I, Reg. Papers,

vol. 67, no. 9, pp. 3021–3034, Sep.

2020,

doi:10.1109/TCSI.2020.2988353.

4161

[19]. Z. Yang, J. Han, and F. Lombardi,

“Approximate compressors for error

resilient multiplier design,” in Proc.

IEEE Int. Symp. Defect Fault

Tolerance VLSI Nanotechnol. Syst.

(DFTS), Amherst, MA, USA, Oct.

2015, pp. 183–186, doi:

10.1109/DFT.2015.7315159.

[20]. O. Akbari, M. Kamal, A. Afzali-

Kusha, and M. Pedram, “Dual-quality

4:2 compressors for utilizing in

dynamic accuracy configurable

multipliers,”IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 25, no.

4,pp. 1352–1361, Apr. 2017, doi:

10.1109/TVLSI.2016.2643003.

[21]. K. Manikantta Reddy, M. H.

Vasantha, Y. B. Nithin Kumar, and D.

Dwivedi, “Design of approximate

booth squarer for error-tolerant

computing,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 28, no.

5, pp. 1230–1241, May 2020, doi:

10.1109/TVLSI.2020.2976131.

[22]. S. Venkatachalam and S.-B. Ko,

“Design of power and area efficient

approximate multipliers,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst.,

vol. 25, no. 5, pp. 1782–1786, May

2017,doi:10.1109/TVLSI.2016.264363

9.

[23]. G. Zervakis, K. Tsoumanis, S. Xydis,

D. Soudris, and K. Pekmestzi,“Design-

efficient approximate multiplication

circuits through partial product

perforation,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 24, no.

10, pp. 3105–3117, Oct. 2016,

doi:10.1109/TVLSI.2016.2535398.

[24]. W. Liu et al., “Design and analysis of

approximate redundant binary

multipliers,” IEEE Trans. Comput.,

vol. 68, no. 6, pp. 804–819, Jun. 2019,

doi: 10.1109/TC.2018.2890222.

