ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

Lehmer-3 Mean Cordial Graphs

D. Jaspin Jeba^{1,*}, G. Sudhana²

¹Research Scholar, Reg.No.20123112092023, ² Assistant Professor ^{1,2}Department of Mathematics, Nesamony Memorial Christian College, Marthandam. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, India. ¹emijaspin@gmail.com ²sudhanaarun1985@gmail.com

Abstract :

Graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A graph G = (V, E) with p vertices and q edges is said to admit Lehmer-3 mean cordial labeling if the mapping h from V(G) to $\{1, 2, 3\}$ induces the mapping h^* from E(G) to $\{1, 2, 3\}$ as $h^*(xy) = \left[\frac{h(x)^3 + h(y)^3}{h(x)^2 + h(y)^2}\right]$ with the condition that the number of vertices labeled with i and the number of vertices labeled with j differ at most by 1, the number of edges labeled with i and the number of edges labeled with j differ at most by 1 where $i, j \in \{1, 2, 3\}$. A graph with a Lehmer-3 mean cordial labeling is called a Lehmer-3 mean cordial graph. In this paper, we prove that all trees, cycle graph $C_n(n \equiv 1, 2(mod 3))$, pinwheel graph PW_n , armed crown graph $AC_{m,n}$, the graphs $L_n \odot K_1$ and $CL_n \odot K_1$ are Lehmer-3 mean cordial graphs. *Keywords : Labeling, Cordial Labeling, Mean Cordial Labeling*

1. Introduction

All graphs considered here are finite, simple, connected and undirected. Cordial labeling was introduced by Cahit [1] in 1987. The notion of mean cordial labeling was introduced by R. Ponraj, M. Sivakumar and M. Sundaram. Let *h* be a mapping from the vertex set of *G* to $\{0, 1, 2\}$. For each edge *xy* assign the label $\left[\frac{h(x)+h(y)}{2}\right]$. The mapping *h* is called a mean cordial labeling of *G* if the number of vertices labeled with *i* and the number of vertices labeled with *j* differ at most by 1, number of edges labeled with *i* and the number of edges labeled with *j* differ at most by 1 where $i, j \in \{1, 2, 3\}$. Motivated by this concept, we introduced a new labeling

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

called Lehmer-3 mean cordial labeling. In this section we provide a summary of definitions required for our investigation.

Definition 1.1. The caterpillar graph CP_t is a tree with the property that a path P_t remains if all the pendant vertices are deleted.

Definition 1.2. The friendship graph F_n consists of n triangles with a common vertex. The pinwheel graph PW_n is obtained from the friendship graph F_n by identifying the outer edge of each triangle in F_n with an edge of a new triangle.

Definition 1.3. The ladder graph L_n is defined to be the cartesian product $P_n \times K_2$, where P_n is the path graph on n vertices and K_2 is the complete graph on two vertices.

Definition 1.4. The circular ladder graph CL_n is defined to be the cartesian product $C_n \times K_2$, where C_n is the cycle graph on n vertices and K_2 is the complete graph on two vertices.

Definition 1.5. An armed crown graph $AC_{m,n}$ is obtained by joining a vertex of degree one in the path P_n at each vertex of the cycle C_m by an edge.

Definition 1.6. The corona product $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

Definition 1.7. Let *p* be a real number. Lehmer-*p* mean of positive real numbers $x_1, x_2, ..., x_n$ is defined as $L(p) = \frac{\sum_{i=1}^{n} x_i^p}{\sum_{i=1}^{n} x_i^{p-1}}$.

Notation 1.8. $v_h(k)$ = the number of vertices labeled with k

 $e_{h^*}(k)$ = the number of edges labeled with k.

Definition 1.9. Let *G* be a simple graph and let $h: V(G) \to \{1, 2, 3\}$. For each edge *xy* assign $h^*(xy) = \left[\frac{h(x)^3 + h(y)^3}{h(x)^2 + h(y)^2}\right]$. The mapping *h* is called a Lehmer-3 mean cordial labeling if $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. A graph with a Lehmer-3 mean cordial labeling is called a Lehmer-3 mean cordial graph.

Example 1.10. Figure 1 shows G_1 is a Lehmer-3 mean cordial graph, while G_2 is not a lehmer-3 mean cordial graph

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

2. Main Results

Theorem 2.1. All trees are Lehmer-3 mean cordial graphs.

Proof. Let T be a tree with n vertices. Let $x_i (1 \le i \le n)$ be the vertices of T.

Suppose that *T* has a center say *u*. Take $u = x_1$. If *r* vertices are adjacent to *u*, denote these vertices by $x_2, x_3, \ldots, x_{r+1}$. If k_1, k_2, \ldots, k_r vertices are adjacent to $x_2, x_3, \ldots, x_{r+1}$ respectively and are at distance two from *u*, denote these vertices by $x_{r+2}, \ldots, x_{r+k_1+1}, x_{r+k_1+2}, \ldots, x_{r+k_1+k_2+1}, \ldots, x_{r+k_1+\dots+k_r+1}$. Continue the same process to denote the vertices of *T*.

Suppose that *T* has two centers say *u* and *v*. Take either $u = x_1$ or $v = x_1$ and follow he process discussed above to denote the vertices of *T*.

Define
$$h: V(G) \to \{1, 2, 3\}$$
 by $h(x_i) = \begin{cases} 1 & \text{if } 1 \le i \le \left|\frac{n}{3}\right| \\ 2 & \text{if } \left[\frac{n}{3}\right] + 1 \le i \le \left[\frac{2n}{3}\right] \\ 3 & \text{if } \left[\frac{2n}{3}\right] + 1 \le i \le n \end{cases}$

Then the number of vertices and edges labeled with $i \in \{1, 2, 3\}$ are as follows: $Case(i):n \equiv 0 \pmod{3}$

$$v_h(i) = \frac{n}{3}, e_{h^*}(1) = \left\lfloor \frac{n-1}{3} \right\rfloor, e_{h^*}(2) = e_{h^*}(3) = \left\lceil \frac{n-1}{3} \right\rceil$$

 $Case(ii):n \equiv 1 \pmod{3}$

$$v_h(1) = \left[\frac{n}{3}\right], v_h(2) = v_h(3) = \left[\frac{n}{3}\right] \text{ and } e_{h^*}(i) = \frac{n-1}{3}.$$

 $Case(iii):n \equiv 2 \pmod{3}$

$$v_h(1) = v_h(2) = \left[\frac{n}{3}\right], v_h(3) = \left[\frac{n}{3}\right], e_{h^*}(1) = e_{h^*}(3) = \left[\frac{n-1}{3}\right] \text{ and } e_{h^*}(2) = \left[\frac{n-1}{3}\right]$$

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

In each case $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence T is a Lehmer-3 mean cordial graph.

Theorem 2.2. The cycle graph C_n is Lehmer-3 mean cordial graph iff $n \equiv 1 \text{ or } 2 \pmod{3}$. *Proof.* Suppose that $n \equiv 1 \text{ or } 2 \pmod{3}$. Let $x_i (1 \le i \le n)$ be the vertices of C_n and let $E(G) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{x_n x_1\}$. Label the vertices of C_n as in Theorem 2.1. Then the number of vertices labeled with $i \in \{1, 2, 3\}$ are same as in Theorem 2.1. Also the number of edges labeled with $i \in \{1, 2, 3\}$ are as follows:

 $Case(i):n \equiv 1 \pmod{3}$

$$e_{h^*}(1) = e_{h^*}(2) = \left\lfloor \frac{n}{3} \right\rfloor$$
 and $e_{h^*}(3) = \left\lceil \frac{n}{3} \right\rceil$

 $Case(ii):n \equiv 2 \pmod{3}$

 $e_{h^*}(1) = \left\lfloor \frac{n}{3} \right\rfloor$ and $e_{h^*}(2) = e_{h^*}(3) = \left\lfloor \frac{n}{3} \right\rfloor$.

In both cases $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence $C_n (n \equiv 1, 2 \pmod{3})$ is a Lehmer-3 mean cordial graph.

Let $n \equiv 0 \pmod{3}$. Suppose that C_n admits Lehmer-3 mean cordial labeling. Then we have $v_h(i) = \frac{n}{3}$ for all $i \in \{1, 2, 3\}$. To obtain the edge conditions we must label the vertices as in Theorem 2.1. Then we have $e_{h^*}(1) = \frac{n}{3} - 1$ and $e_{h^*}(3) = \frac{n}{3} + 1$. Thus $|e_{h^*}(1) - e_{h^*}(3)| > 1$.

Hence C_n is not a Lehmer-3 mean cordial graph when $n \equiv 0 \pmod{3}$.

Theorem 2.3. The complete graph K_n is a Lehmer-3 mean cordial graph iff $n \le 2$.

Proof. Let $n \leq 2$. Then the result follows from Theorem 2.1.

Suppose that $K_n (n \ge 3)$ admits Lehmer-3 mean cordial labeling. Then $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. $Case(i): n \equiv 0 \pmod{3}$

Let n = 3k, where k is any positive integer. Then $v_h(i) = k$ for all $i \in \{1, 2, 3\}$, $e_{h^*}(1) = \frac{k(k-1)}{2}, e_{h^*}(2) = \frac{k(3k-1)}{2}$ and $e_{h^*}(3) = \frac{k(5k-1)}{2}$.

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

Here $|e_{h^*}(i) - e_{h^*}(j)| > 1$ for all $k \ge 2$ and $i \ne j$, which is a contradiction. If k = 1, $|e_{h^*}(1) - e_{h^*}(3)| = 2$, which is a contradiction.

$$Case(ii):n \equiv 1 \pmod{3}$$

Let n = 3k + 1, where k is any positive integer.

 $Subcase(i):v_h(1) = k + 1, v_h(2) = v_h(3) = k$

Here $e_{h^*}(1) = \frac{k(k+1)}{2}$, $e_{h^*}(2) = \frac{k(3k+1)}{2}$ and $e_{h^*}(3) = \frac{k(5k+1)}{2}$.

 $Subcase(ii):v_h(2) = k + 1, v_h(1) = v_h(3) = k$

Here
$$e_{h^*}(1) = \frac{k(k-1)}{2}$$
, $e_{h^*}(2) = \frac{3k(k+1)}{2}$ and $e_{h^*}(3) = \frac{k(5k+1)}{2}$

 $Subcase(iii): v_h(3) = k + 1, v_h(1) = v_h(2) = k$

Here
$$e_{h^*}(1) = \frac{k(k-1)}{2}$$
, $e_{h^*}(2) = \frac{k(3k-1)}{2}$ and $e_{h^*}(3) = \frac{5k(k+1)}{2}$

In each subcase $|e_{h^*}(i) - e_{h^*}(j)| > 1$ for all $k \ge 2$ and $i \ne j$, which is a contradiction. If $k = 1, |e_{h^*}(1) - e_{h^*}(3)| > 1$, which is a contradiction.

 $Case(iii):n \equiv 2 \pmod{3}$

Let n = 3k + 2, where k is any positive integer.

Subcase(i): $v_h(1) = v_h(2) = k + 1, v_h(3) = k$

Here $e_{h^*}(1) = \frac{k(k+1)}{2}$, $e_{h^*}(2) = \frac{(k+1)(3k+2)}{2}$ and $e_{h^*}(3) = \frac{k(5k+3)}{2}$.

 $Subcase(ii):v_h(1) = v_h(3) = k + 1, v_h(2) = k$

Here
$$e_{h^*}(1) = \frac{k(k+1)}{2}$$
, $e_{h^*}(2) = \frac{k(3k+1)}{2}$ and $e_{h^*}(3) = \frac{(k+1)(5k+2)}{2}$.

 $Subcase(iii): v_h(2) = v_h(3) = k + 1, v_h(1) = k$

Here
$$e_{h^*}(1) = \frac{k(k-1)}{2}$$
, $e_{h^*}(2) = \frac{3k(k+1)}{2}$ and $e_{h^*}(3) = \frac{(k+1)(5k+2)}{2}$.

In each subcase $|e_{h^*}(i) - e_{h^*}(j)| > 1$ for all $k \ge 3$ and $i \ne j$, which is a contradiction. If k = 1 or 2, $|e_{h^*}(1) - e_{h^*}(3)| > 1$, which is a contradiction.

Hence K_n is not a Lehmer-3 mean cordial graph for all $n \ge 3$.

Theorem 2.4. The pinwheel graph PW_n is a Lehmer-3 mean cordial graph.

Proof. Let *G* be the pinwheel graph PW_n . Let x, x_i, y_i, z_i $(1 \le i \le n)$ be the vertices of *G* and let $xx_i, xy_i, x_iy_i, x_iz_i, y_iz_i$ $(1 \le i \le n)$ be the edges of *G*. Define $h: V(G) \to \{1, 2, 3\}$ as follows: $Case(i): n \equiv 0 \pmod{3}$

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

Let n = 3k, where k is any positive integer. Define $h: V(G) \rightarrow \{1, 2, 3\}$ by h(x) = 1 and

$$h(x_i) = h(y_i) = h(z_i) = \begin{cases} 1 & if \ 1 \le i \le k \\ 2 & if \ k+1 \le i \le 2k \\ 3 & if \ 2k+1 \le i \le 3k \end{cases}$$

Here the number of vertices and edges labeled with $i \in \{1,2,3\}$ are $v_h(1) = \left\lfloor \frac{3n+1}{3} \right\rfloor$,

$$v_h(2) = v_h(3) = \left\lfloor \frac{3n+1}{3} \right\rfloor$$
 and $e_{h^*}(i) = \frac{5n}{3}$

 $Case(ii):n \equiv 1 \pmod{3}$

Let n = 3k + 1. Label the vertices of G as in case(i) for $1 \le i \le 3k$. Also label the vertices x_n , y_n , z_n by 1, 2, 3 respectively. Then the number of vertices and edges labeled with $i \in \{1,2,3\}$ are $v_h(1) = \left\lceil \frac{3n+1}{3} \right\rceil$, $v_h(2) = v_h(3) = \left\lfloor \frac{3n+1}{3} \right\rfloor$, $e_{h^*}(1) = \left\lfloor \frac{5n}{3} \right\rfloor$ and $e_{h^*}(2) = e_{h^*}(3) = \left\lfloor \frac{5n}{3} \right\rfloor$.

 $Case(iii):n \equiv 2 \pmod{3}$

Let n = 3k + 2. Label the vertices of *G* as in case(i) for $1 \le i \le 3k$. Also label the vertices $x_{n-1}, y_{n-1}, z_{n-1}$ by 1, 1, 2 respectively and x_n, y_n, z_n by 2, 3, 3 respectively.

Then the number of vertices and edges labeled with $i \in \{1,2,3\}$ are $v_h(1) = \left\lceil \frac{3n+1}{3} \right\rceil$, $v_h(2) = v_h(3) = \left\lfloor \frac{3n+1}{3} \right\rfloor$, $e_{h^*}(1) = e_{h^*}(2) = \left\lfloor \frac{5n}{3} \right\rfloor$ and $e_{h^*}(3) = \left\lceil \frac{5n}{3} \right\rceil$. In each case $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$.

Hence G admits Lehmer-3 mean cordial labeling.

Theorem 2.5. The graph $L_n \odot K_1$ is a Lehmer-3 mean cordial graph.

Proof. Le *G* be the graph $L_n \odot K_1$. Let $x_i, y_i (1 \le i \le n)$ be the vertices of L_n and $x_i', y_i' (1 \le i \le n)$ be the added vertices to form *G*. Define $h: V(G) \to \{1, 2, 3\}$ as follows: $Case(i):n \equiv 0 \pmod{3}$

$$h(x_i) = h(y_i) = \begin{cases} 1 & if \ 1 \le i \le \frac{n}{3} + 1 \\ 2 & if \ \frac{n}{3} + 2 \le i \le \frac{2n}{3} \\ 3 & if \ \frac{2n}{3} + 1 \le i \le n \end{cases}$$

3893

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

•

$$h(x_i') = h(y_i') = \begin{cases} 1 & if \ 1 \le i \le \frac{n}{3} - 1 \\ 2 & if \ \frac{n}{3} \le i \le \frac{2n}{3} \\ 3 & if \ \frac{2n}{3} + 1 \le i \le n \end{cases}$$

Here the number of vertices and edges labeled with $i \in \{1,2,3\}$ are $v_h(i) = \frac{4n}{3}$, $e_{h^*}(1) = e_{h^*}(2) = \left\lfloor \frac{5n-2}{3} \right\rfloor$ and $e_{h^*}(3) = \left\lfloor \frac{5n-2}{3} \right\rfloor$.

 $Case(ii):n \equiv 1 \pmod{3}$

$$h(x_{i}) = h(y_{i}) = \begin{cases} 1 & \text{if } 1 \le i \le \left\lceil \frac{n}{3} \right\rceil \\ 2 & \text{if } \left\lceil \frac{n}{3} \right\rceil + 1 \le i \le \left\lceil \frac{2n}{3} \right\rceil \\ 3 & \text{if } \left\lceil \frac{2n}{3} \right\rceil + 1 \le i \le n \end{cases}$$

$$h(x_{i}') = \begin{cases} 1 & \text{if } 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & \text{if } \left\lceil \frac{n}{3} \right\rceil \le i \le \left\lceil \frac{2n}{3} \right\rceil \\ 3 & \text{if } \left\lceil \frac{2n}{3} \right\rceil + 1 \le i \le n \end{cases} \text{ and } h(y_{i}') = \begin{cases} 1 & \text{if } 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & \text{if } \left\lceil \frac{n}{3} \right\rceil \le i \le \left\lfloor \frac{2n}{3} \right\rfloor \\ 3 & \text{if } \left\lceil \frac{2n}{3} \right\rceil + 1 \le i \le n \end{cases} \text{ and } h(y_{i}') = \begin{cases} 1 & \text{if } 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & \text{if } \left\lceil \frac{n}{3} \right\rceil \le i \le \left\lfloor \frac{2n}{3} \right\rfloor \\ 3 & \text{if } \left\lceil \frac{2n}{3} \right\rceil + 1 \le i \le n \end{cases}$$
Here $v_{h}(1) = \left\lceil \frac{4n}{3} \right\rceil, v_{h}(2) = v_{h}(3) = \left\lfloor \frac{4n}{3} \right\rfloor \text{ and } e_{h^{*}}(i) = \frac{5n-2}{3} \text{ for all } i \in \{1, 2, 3\}$

$$Case(iii):n \equiv 2(mod 3)$$

Label the vertices $x_i, y_i (1 \le i \le n)$ as in case(ii). Also label the vertices $x_i', y_i' (1 \le i \le n)$ by

$$h(x_{i}') = \begin{cases} 1 & if \ 1 \le i \le \left[\frac{n}{3}\right] \\ 2 & if \ \left[\frac{n}{3}\right] + 1 \le i \le \left[\frac{2n}{3}\right] \\ 3 & if \ \left[\frac{2n}{3}\right] \le i \le n \end{cases} \text{ and } h(y_{i}') = \begin{cases} 1 & if \ 1 \le i \le \left[\frac{n}{3}\right] \\ 2 & if \ \left[\frac{n}{3}\right] \le i \le \left[\frac{2n}{3}\right] - 1 \\ 3 & if \ \frac{2n}{3} \le i \le n \end{cases}$$

Here $v_{h}(1) = v_{h}(3) = \left[\frac{4n}{3}\right], v_{h}(2) = \left[\frac{4n}{3}\right], e_{h^{*}}(1) = \left[\frac{5n-2}{3}\right] \text{ and } e_{h^{*}}(2) = e_{h^{*}}(3) = \left[\frac{5n-2}{3}\right].$

In each case $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence *G* admits Lehmer-3 mean cordial labeling.

Theorem 2.6. The graph $CL_n \odot K_1$ is a Lehmer-3 mean cordial graph iff $n \neq 3$ *Proof.* Let *G* be the graph $CL_n \odot K_1$. Let $x_i, y_i (1 \le i \le n)$ be the vertices of CL_n and

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

 x_i' , $y_i'(1 \le i \le n)$ be the added vertices to form *G*.

Let n = 3. Then |V(G)| = 6 and |E(G)| = 9. Take $v_h(i) = 2$ for all $i, j \in \{1, 2, 3\}$. Then $e_{h^*}(1)$ is either 0 or 1 and so $|e_{h^*}(1) - e_{h^*}(2)| > 1$ or $|e_{h^*}(1) - e_{h^*}(3)| > 1$ or

 $|e_{h^*}(2) - e_{h^*}(3)| > 1$. Thus *G* is not a Lehmer-3 mean cordial graph.

Suppose that $n \neq 3$. Define $h: V(G) \rightarrow \{1, 2, 3\}$ as follows:

 $Case(i): n \equiv 0 \pmod{3}$ and $n \neq 3$.

Subcase(i): n is odd

$$h(x_i) = 1 \text{ for } 1 \le i \le n-2, \ h(x_{n-1}) = h(x_n) = 2,$$

$$h(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le \frac{n}{3} + 2 \\ 2 & \text{if } \frac{n}{3} + 3 \le i \le \frac{2n}{3} + 1 \\ 3 & \text{if } \frac{2n}{3} + 2 \le i \le n \end{cases}$$

$$h(x_i') = h(y_i') = \begin{cases} 2 & \text{if } 1 \le i \le \frac{n}{3} + 1 \\ 3 & \text{if } \frac{n}{3} + 2 \le i \le n \end{cases}$$

Subcase(ii): n is even

Label the vertices $x_i, y_i (1 \le i \le n)$ and $x_i', y_i' (i \ne \frac{n}{3} + 1)$ as in subcase(i). If $i = \frac{n}{3} + 1$, label the vertex x_i' by 2 and y_i' by 3.

In both subcases, the number of vertices and edges labeled with $i \in \{1,2,3\}$ are $v_h(i) = \frac{4n}{3}$ and

$$e_{h^*}(i) = \frac{5n}{3}.$$

$$Case(ii):n \equiv 1 \pmod{3}$$

$$Subcase(i): n \text{ is even}$$

$$h(x_i) = 1 \text{ for } 1 \le i \le n$$

$$h(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le \left\lceil \frac{n}{3} \right\rceil \\ 2 & \text{if } \left\lceil \frac{n}{3} \right\rceil + 1 \le i \le \left\lceil \frac{2n}{3} \right\rceil \\ 3 & \text{if } \left\lceil \frac{2n}{3} \right\rceil + 1 \le i \le n \end{cases}$$

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

$$h(x_i') = h(y_i') = \begin{cases} 2 & if \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ 3 & if \ \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases}$$

Subcase(ii): n is odd

Label the vertices $x_i, y_i (1 \le i \le n)$ and $x_i', y_i' (i \ne \left[\frac{n}{3}\right])$ as in subcase(i). If $i = \left[\frac{n}{2}\right]$, label the vertex x_i' by 2 and y_i' by 3.

In both subcases, $v_h(1) = \left[\frac{4n}{3}\right]$, $v_h(2) = v_h(3) = \left[\frac{4n}{3}\right]$, $e_{h^*}(1) = e_{h^*}(2) = \left[\frac{5n}{3}\right]$ and $e_{h^*}(3) = \left[\frac{5n}{3}\right]$. $Case(iii):n \equiv 2(mod 3)$ Subcase(i): n is odd $h(x_i) = 1 \text{ for } 1 \le i \le n$ $h(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le \left[\frac{n}{3}\right] \\ 2 & \text{if } \left[\frac{n}{3}\right] + 1 \le i \le \left[\frac{2n}{3}\right] \\ 3 & \text{if } \left[\frac{2n}{3}\right] \le i \le n \end{cases}$ $h(x_i') = h(y_i') = \begin{cases} 2 & \text{if } 1 \le i \le \left[\frac{n}{2}\right] \\ 3 & \text{if } \left[\frac{n}{3}\right] + 1 \le i \le n \end{cases}$

Subcase(ii): n is even

Label the vertices $x_i, y_i (1 \le i \le n)$ and $x_i', y_i' (i \ne \left\lceil \frac{n}{3} \right\rceil + 1)$ as in subcase(i). If $i = \left\lceil \frac{n}{2} \right\rceil + 1$, label the vertex x_i' by 2 and y_i' by 3.

In both subcases, $v_h(1) = v_h(2) = \left[\frac{4n}{3}\right]$, $v_h(3) = \left\lfloor\frac{4n}{3}\right\rfloor e_{h^*}(1) = e_{h^*}(2) = \left\lfloor\frac{5n}{3}\right\rfloor$ and $e_{h^*}(3) = \left\lceil\frac{5n}{3}\right\rceil$.

In each case, $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence $CL_n \odot K_1$ admits Lehmer-3 mean cordial labeling.

Theorem 2.7. An armed crown graph $AC_{m,n}$ is a Lehmer-3 mean cordial graph. *Proof.* Let $G = AC_{m,n}$. Let $x_i (1 \le i \le m)$ be the vertices of the cycle C_m and let

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

 $\begin{aligned} x_{ij}(1 \le i \le m; 1 \le j \le n) \text{ be the vertices of the paths attached at each } x_i. \text{ Then} \\ E(G) &= \{x_i x_{i+1} : \ 1 \le i \le m-1\} \cup \{x_m x_1\} \cup \{x_i x_{i1} : 1 \le i \le m\} \cup \\ \{x_{ij} x_{i(j+1)} : \ 1 \le i \le m; 1 \le j \le n-1\}. \text{ Define } h: V(G) \to \{1, 2, 3\} \text{ as follows:} \\ Case(i):m &\equiv 0 \pmod{3} \\ \text{Let } m &= 3k. \text{ Then } h(x_i) = 1 \text{ for } 1 \le i \le m, \\ h(x_{ij}) &= \begin{cases} 2 & if \ 1 \le i \le k \\ 3 & if \ k+1 \le i \le 2k \end{cases} \text{ for } 1 \le j \le n \\ h(x_{ij}) &= 1 \text{ for } 2k+1 \le i \le m \text{ and } 1 \le j \le n \\ h(x_{(m-1)(n-1)}) &= h(x_{m(n-1)}) = 2 \text{ and } h(x_{(m-1)n}) = h(x_{mn}) \\ &= 3 \end{aligned}$ Here $v_h(i) = e_{h^*}(i) = \frac{m(n+1)}{3} \text{ for all } i \in \{1,2,3\}. \\ Case(ii):m &\equiv 1 \pmod{3} \end{aligned}$

Let m = 3k + 1. Label the vertices $x_i (1 \le i \le m)$, $x_{ij} (1 \le i \le 3k; 1 \le j \le n)$ as in case(i) and the remaining vertices as follows:

 $Subcase(i):n \equiv 0 \pmod{3}$

$$h(x_{mj}) = \begin{cases} 1 & if \ 1 \le j \le \frac{n}{3} \\ 2 & if \ \frac{n}{3} + 1 \le j \le \frac{2n}{3} \\ 3 & if \ \frac{2n}{3} + 1 \le j \le n \end{cases}$$

Here $v_h(1) = e_{h^*}(1) = \left[\frac{m(n+1)}{3}\right], v_h(2) = e_{h^*}(2) = v_h(3) = e_{h^*}(3) = \left\lfloor\frac{m(n+1)}{3}\right\rfloor$ Subcase(ii): $n \equiv 1 \pmod{3}$

$$h(x_{mj}) = \begin{cases} 1 & if \ 1 \le j \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & if \ \left\lceil \frac{n}{3} \right\rceil \le j \le \left\lceil \frac{2n}{3} \right\rceil \\ 3 & if \ \left\lceil \frac{2n}{3} \right\rceil + 1 \le j \le n \end{cases}$$

Here $v_h(1) = e_{h^*}(1) = v_h(2) = e_{h^*}(2) = \left[\frac{m(n+1)}{3}\right], v_h(3) = e_{h^*}(3) = \left\lfloor\frac{m(n+1)}{3}\right\rfloor$ Subcase(iii): $n \equiv 2 \pmod{3}$

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

$$h(x_{mj}) = \begin{cases} 1 & if \ 1 \le j \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & if \ \left\lceil \frac{n}{3} \right\rceil \le j \le \left\lfloor \frac{2n}{3} \right\rfloor \\ 3 & if \ \left\lceil \frac{2n}{3} \right\rceil \le j \le n \end{cases}$$

Here $v_h(i) = e_{h^*}(i) = \frac{m(n+1)}{3}$ for all $i \in \{1,2,3\}$.

$$Case(iii):m \equiv 2 \pmod{3}$$

Let m = 3k + 2. Label the vertices $x_i (1 \le i \le m)$, $x_{ij} (1 \le i \le 3k; 1 \le j \le n)$ as in case(i) and the remaining vertices as follows:

 $Subcase(i): n \equiv 0 \pmod{3}$

$$h(x_{(m-1)j}) = \begin{cases} 1 & \text{if } 1 \le j \le \frac{n}{3} - 1 \\ 2 & \text{if } \frac{n}{3} \le j \le n \end{cases} \text{ and } h(x_{mj}) = \begin{cases} 1 & \text{if } 1 \le j \le \frac{n}{3} \\ 3 & \text{if } \frac{n}{3} + 1 \le j \le n \end{cases}$$

Here $v_h(1) = e_{h^*}(1) = v_h(2) = e_{h^*}(2) = \left[\frac{m(n+1)}{3}\right], \ v_h(3) = e_{h^*}(3) = \left|\frac{m(n+1)}{3}\right|$

Here $v_h(1) = e_{h^*}(1) = v_h(2) = e_{h^*}(2) = \left[\frac{m(n+1)}{3}\right], v_h(3) = e_{h^*}(3) = \left[\frac{m(n+1)}{3}\right].$ Subcase(ii): $n \equiv 1,2 \pmod{3}$

$$h(x_{(m-1)j}) = \begin{cases} 1 & \text{if } 1 \le j \le \left\lfloor \frac{n}{3} \right\rfloor \\ 2 & \text{if } \left\lfloor \frac{n}{3} \right\rfloor \le j \le n \end{cases} \text{ and } h(x_{mj}) = \begin{cases} 1 & \text{if } 1 \le j \le \left\lfloor \frac{n}{3} \right\rfloor \\ 3 & \text{if } \left\lfloor \frac{n}{3} \right\rfloor \le j \le n \end{cases}$$

Here $v_h(1) = e_{h^*}(1) = \left\lfloor \frac{m(n+1)}{3} \right\rfloor, v_h(2) = e_{h^*}(2) = v_h(3) = e_{h^*}(3) = \left\lfloor \frac{m(n+1)}{3} \right\rfloor.$
In each case, $|w_i(i) = w_i(i)| \le 1$ and $|e_{i^*}(i) = e_{i^*}(i)| \le 1$ for all $i, i \in \{1, 2, 3\}$. Here

In each case $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence G is a Lehmer-3 mean cordial graph.

Theorem 2.8. The graph G(p,q) obtained by identifying the end vertices of the path P_t on the caterpillar graph CP_t is a Lehmer-3 mean cordial graph iff any one of the following hold:

- (i) $s + t \equiv 0 \text{ or } 2 \pmod{3}$
- (ii) $s + t \equiv 1 \pmod{3}$ and $s \ge 2(t 1)$,

where s is the number of pendant vertices of G.

Proof. Let x_1 be the identified vertex of G. Let s be the number of pendant vertices of G. Then p = q = s + t - 1. Also G contains a cycle of length t - 1. $Case(i):s + t \equiv 0 \text{ or } 2 \pmod{3}$

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

If l_1 pendant vertices are adjacent to x_1 , denote these vertices by $x_2, x_3, \ldots, x_{l_1+1}$. Let x_{l_1+2} be the vertex which is adjacent to x_1 on the cycle. If l_2 pendant vertices are adjacent to x_{l_1+2} , denote these vertices by $x_{l_1+3}, \ldots, x_{l_1+l_2+2}$. Let $x_{l_1+l_2+3}$ be the vertex which is adjacent to x_{l_1+2} on the cycle and continue the same process to denote the vertices of G. Define

$$h: V(G) \to \{1, 2, 3\} \text{ by } h(x_i) = \begin{cases} 1 & \text{if } 1 \le i \le \left|\frac{p}{3}\right| \\ 2 & \text{if } \left[\frac{p}{3}\right] + 1 \le i \le \left[\frac{2p}{3}\right] \\ 3 & \text{if } \left[\frac{2p}{3}\right] + 1 \le i \le n \end{cases}$$

Then the number of vertices and edges labeled with $i \in \{1, 2, 3\}$ are as follows: $Subcase(i): p \equiv 1 \pmod{3}$

$$v_h(1) = \left[\frac{p}{3}\right], v_h(2) = v_h(3) = \left[\frac{p}{3}\right], e_{h^*}(1) = e_{h^*}(2) = \left[\frac{p}{3}\right] \text{ and } e_{h^*}(3) = \left[\frac{p}{3}\right]$$

 $Subcase(ii): p \equiv 2 \pmod{3}$

$$v_h(1) = v_h(2) = \left[\frac{p}{3}\right], v_h(3) = \left[\frac{p}{3}\right], e_{h^*}(1) = \left[\frac{p}{3}\right] \text{ and } e_{h^*}(2) = e_{h^*}(3) = \left[\frac{p}{3}\right].$$

In each subcase $|v_h(i) - v_h(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| \le 1$ for all $i, j \in \{1, 2, 3\}$. Hence G is a Lehmer-3 mean cordial graph.

Case(*ii*): $s + t \equiv 1 \pmod{3}$ and $s \ge 2(t - 1)$.

Let $x_1, x_2, \ldots, x_{t-1}$ be the path on the cycle. If $k_1, k_2, \ldots, k_{t-1}$ pendant vertices are adjacent to $x_1, x_2, \ldots, x_{t-1}$ respectively, denote these vertices by $x_t, x_{t+1}, \ldots, x_{t+k_1-1}, x_{t+k_1}, \ldots, x_{t+k_1+k_2-1}, \ldots, x_n$. Then label the vertices of *G* as in case(i).

Here $v_h(i) = e_{h^*}(i) = \frac{p}{3}$ for all $i \in \{1, 2, 3\}$. Hence *G* is a Lehmer-3 mean cordial graph. $Case(iii):s + t \equiv 1 \pmod{3}$ and s < 2(t - 1).

Suppose that *G* admits Lehmer-3 mean cordial labeling. Then $v_h(i) = \frac{s+t-1}{3}$ for all $i \in \{1, 2, 3\}$. To obtain the edge conditions we must label the vertices as in case(i) or case(ii). In both cases, $e_{h^*}(1) = v_h(1) - 1$. Then $|e_{h^*}(1) - e_{h^*}(2)| > 1$ or $|e_{h^*}(1) - e_{h^*}(3)| > 1$ or $|e_{h^*}(2) - e_{h^*}(3)| > 1$, which is a contradiction. Hence *G* is not a Lehmer-3 mean cordial graph.

Example 2.9. The Lehmer-3 mean cordial labeling of the graph *G* obtained by identifying the end vertices of the path P_8 on the caterpillar graph CP_7 is shown in figure 2.

ISSN- 2394-5125 VOL 07, ISSUE 17, 2020

References

- I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol 23, pp. 201-207, 1987.
- [2] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic J. Combin., (2019).
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1972).
- [4] D. Jaspin Jeba, G. Sudhana, I_n Mean Cordial Graphs, Turkish Online Journal of Qualitative Inquiry (TOJQI), Volume 12, Issue 9, August 2021: 8055-8061.
- [5] D. Jaspin Jeba, G. Sudhana, I₂- Mean Cordial Labeling of Some Graphs, Shodhasamhita:
 Journal of Fundamental & Comparative Research, Vol. VIII, No. I(XVII): 2022, 2277-7067.
- [6] R. Ponraj, M. Sivakumar, M. Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics, 2012, 2, 145-148.