Lehmer-3 Mean Cordial Graphs

D. Jaspin Jeba ${ }^{1,}{ }^{\text {, }}$, G. Sudhana ${ }^{2}$
${ }^{1}$ Research Scholar, Reg.No.20123112092023, ${ }^{2}$ Assistant Professor
${ }^{1,2}$ Department of Mathematics, Nesamony Memorial Christian College, Marthandam.
Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, India.
${ }^{1}$ emijaspin@gmail.com
²sudhanaarun1985@gmail.com

Abstract

: Graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A graph $G=(V, E)$ with p vertices and q edges is said to admit Lehmer-3 mean cordial labeling if the mapping h from $V(G)$ to $\{1,2,3\}$ induces the mapping h^{*} from $E(G)$ to $\{1,2,3\}$ as $h^{*}(x y)=\left\lceil\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rceil$ with the condition that the number of vertices labeled with i and the number of vertices labeled with j differ at most by 1 , the number of edges labeled with i and the number of edges labeled with j differ at most by 1 where $i, j \in\{1,2,3\}$. A graph with a Lehmer-3 mean cordial labeling is called a Lehmer-3 mean cordial graph. In this paper, we prove that all trees, cycle graph $\quad C_{n}(n \equiv 1,2(\bmod 3))$, pinwheel graph $P W_{n}$, armed crown graph $A C_{m, n}$, the graphs $L_{n} \odot K_{1}$ and $C L_{n} \odot K_{1}$ are Lehmer-3 mean cordial graphs.

Keywords : Labeling, Cordial Labeling, Mean Cordial Labeling

1. Introduction

All graphs considered here are finite, simple, connected and undirected. Cordial labeling was introduced by Cahit [1] in 1987. The notion of mean cordial labeling was introduced by R. Ponraj, M. Sivakumar and M. Sundaram. Let h be a mapping from the vertex set of G to $\{0,1,2\}$. For each edge $x y$ assign the label $\left\lceil\frac{h(x)+h(y)}{2}\right\rceil$. The mapping h is called a mean cordial labeling of G if the number of vertices labeled with i and the number of vertices labeled with j differ at most by 1 , number of edges labeled with i and the number of edges labeled with j differ at most by 1 where $i, j \in\{1,2,3\}$. Motivated by this concept, we introduced a new labeling
called Lehmer-3 mean cordial labeling. In this section we provide a summary of definitions required for our investigation.

Definition 1.1. The caterpillar graph $C P_{t}$ is a tree with the property that a path P_{t} remains if all the pendant vertices are deleted.
Definition 1.2. The friendship graph F_{n} consists of n triangles with a common vertex. The pinwheel graph $P W_{n}$ is obtained from the friendship graph F_{n} by identifying the outer edge of each triangle in F_{n} with an edge of a new triangle.
Definition 1.3. The ladder graph L_{n} is defined to be the cartesian product $P_{n} \times K_{2}$, where P_{n} is the path graph on n vertices and K_{2} is the complete graph on two vertices.

Definition 1.4. The circular ladder graph $C L_{n}$ is defined to be the cartesian product $C_{n} \times K_{2}$, where C_{n} is the cycle graph on n vertices and K_{2} is the complete graph on two vertices.

Definition 1.5. An armed crown graph $A C_{m, n}$ is obtained by joining a vertex of degree one in the path P_{n} at each vertex of the cycle C_{m} by an edge.
Definition 1.6. The corona product $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ is defined as the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.7. Let p be a real number. Lehmer- p mean of positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ is defined as $L(p)=\frac{\sum_{i=1}^{n} x_{i}{ }^{p}}{\sum_{i=1}^{n} x_{i}{ }^{p-1}}$.

Notation 1.8. $v_{h}(k)=$ the number of vertices labeled with k
$e_{h^{*}}(k)=$ the number of edges labeled with k.
Definition 1.9. Let G be a simple graph and let $h: V(G) \rightarrow\{1,2,3\}$. For each edge $x y$ assign $h^{*}(x y)=\left\lceil\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rceil$. The mapping h is called a Lehmer-3 mean cordial labeling if $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. A graph with a Lehmer-3 mean cordial labeling is called a Lehmer-3 mean cordial graph.
Example 1.10. Figure 1 shows G_{1} is a Lehmer-3 mean cordial graph, while G_{2} is not a lehmer-3 mean cordial graph

Figure 1

2. Main Results

Theorem 2.1. All trees are Lehmer-3 mean cordial graphs.
Proof. Let T be a tree with n vertices. Let $x_{i}(1 \leq i \leq n)$ be the vertices of T.
Suppose that T has a center say u. Take $u=x_{1}$. If r vertices are adjacent to u, denote these vertices by $x_{2}, x_{3}, \ldots, x_{r+1}$. If $k_{1}, k_{2}, \ldots, k_{r}$ vertices are adjacent to $x_{2}, x_{3}, \ldots, x_{r+1}$ respectively and are at distance two from u, denote these vertices by $x_{r+2}, \ldots, x_{r+k_{1}+1}, x_{r+k_{1}+2}$, $\ldots, x_{r+k_{1}+k_{2}+1}, \ldots, x_{r+k_{1}+\cdots+k_{r}+1}$. Continue the same process to denote the vertices of T.

Suppose that T has two centers say u and v. Take either $u=x_{1}$ or $v=x_{1}$ and follow he process discussed above to denote the vertices of T.

$$
\text { Define } h: V(G) \rightarrow\{1,2,3\} \text { by } h\left(x_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq i \leq n\end{cases}
$$

Then the number of vertices and edges labeled with $i \in\{1,2,3\}$ are as follows:
Case $(i): n \equiv 0(\bmod 3)$

$$
v_{h}(i)=\frac{n}{3}, e_{h^{*}}(1)=\left\lfloor\frac{n-1}{3}\right\rfloor, e_{h^{*}}(2)=e_{h^{*}}(3)=\left\lceil\frac{n-1}{3}\right\rceil .
$$

Case(ii): $n \equiv 1(\bmod 3)$

$$
v_{h}(1)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(2)=v_{h}(3)=\left\lfloor\frac{n}{3}\right\rfloor \text { and } e_{h^{*}}(i)=\frac{n-1}{3} .
$$

Case(iii): $n \equiv 2(\bmod 3)$

$$
v_{h}(1)=v_{h}(2)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(3)=\left\lfloor\frac{n}{3}\right\rfloor, e_{h^{*}}(1)=e_{h^{*}}(3)=\left\lfloor\frac{n-1}{3}\right\rfloor \text { and } e_{h^{*}}(2)=\left\lceil\frac{n-1}{3}\right\rceil .
$$

In each case $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence T is a Lehmer-3 mean cordial graph.

Theorem 2.2. The cycle graph C_{n} is Lehmer-3 mean cordial graph iff $n \equiv 1 \operatorname{or} 2(\bmod 3)$.
Proof. Suppose that $n \equiv 1$ or $2(\bmod 3)$. Let $x_{i}(1 \leq i \leq n)$ be the vertices of C_{n} and let $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\}$. Label the vertices of C_{n} as in Theorem 2.1. Then the number of vertices labeled with $i \in\{1,2,3\}$ are same as in Theorem 2.1. Also the number of edges labeled with $i \in\{1,2,3\}$ are as follows:

Case $(i): n \equiv 1(\bmod 3)$

$$
e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lfloor\frac{n}{3}\right\rfloor \text { and } \quad e_{h^{*}}(3)=\left\lceil\frac{n}{3}\right\rceil .
$$

Case(ii): $n \equiv 2(\bmod 3)$

$$
e_{h^{*}}(1)=\left\lfloor\frac{n}{3}\right\rfloor \text { and } e_{h^{*}}(2)=e_{h^{*}}(3)=\left\lceil\frac{n}{3}\right\rceil .
$$

In both cases $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$.
Hence $C_{n}(n \equiv 1,2(\bmod 3))$ is a Lehmer-3 mean cordial graph.
Let $n \equiv 0(\bmod 3)$. Suppose that C_{n} admits Lehmer-3 mean cordial labeling. Then we have $v_{h}(i)=\frac{n}{3}$ for all $i \in\{1,2,3\}$. To obtain the edge conditions we must label the vertices as in Theorem 2.1. Then we have $e_{h^{*}}(1)=\frac{n}{3}-1$ and $e_{h^{*}}(3)=\frac{n}{3}+1$. Thus $\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|>1$. Hence C_{n} is not a Lehmer-3 mean cordial graph when $n \equiv 0(\bmod 3)$.

Theorem 2.3. The complete graph K_{n} is a Lehmer-3 mean cordial graph iff $n \leq 2$.
Proof. Let $n \leq 2$. Then the result follows from Theorem 2.1.
Suppose that $K_{n}(n \geq 3)$ admits Lehmer- 3 mean cordial labeling. Then
$\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$.
Case(i): $n \equiv 0(\bmod 3)$
Let $n=3 k$, where k is any positive integer. Then $v_{h}(i)=k$ for all $i \in\{1,2,3\}$, $e_{h^{*}}(1)=\frac{k(k-1)}{2}, e_{h^{*}}(2)=\frac{k(3 k-1)}{2}$ and $e_{h^{*}}(3)=\frac{k(5 k-1)}{2}$.

Here $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right|>1$ for all $k \geq 2$ and $i \neq j$, which is a contradiction. If $k=1$, $\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|=2$, which is a contradiction.

Case(ii):n $\equiv 1(\bmod 3)$
Let $n=3 k+1$, where k is any positive integer.
$\operatorname{Subcase}(i): v_{h}(1)=k+1, v_{h}(2)=v_{h}(3)=k$
Here $e_{h^{*}}(1)=\frac{k(k+1)}{2}, e_{h^{*}}(2)=\frac{k(3 k+1)}{2}$ and $e_{h^{*}}(3)=\frac{k(5 k+1)}{2}$.
Subcase(ii): $v_{h}(2)=k+1, v_{h}(1)=v_{h}(3)=k$
Here $e_{h^{*}}(1)=\frac{k(k-1)}{2}, e_{h^{*}}(2)=\frac{3 k(k+1)}{2}$ and $e_{h^{*}}(3)=\frac{k(5 k+1)}{2}$.
Subcase(iii): $v_{h}(3)=k+1, v_{h}(1)=v_{h}(2)=k$
Here $e_{h^{*}}(1)=\frac{k(k-1)}{2}, e_{h^{*}}(2)=\frac{k(3 k-1)}{2}$ and $e_{h^{*}}(3)=\frac{5 k(k+1)}{2}$.
In each subcase $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right|>1$ for all $k \geq 2$ and $i \neq j$, which is a contradiction. If $k=1,\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|>1$, which is a contradiction.

Case(iii) $: n \equiv 2(\bmod 3)$
Let $n=3 k+2$, where k is any positive integer.
$\operatorname{Subcase}(i): v_{h}(1)=v_{h}(2)=k+1, v_{h}(3)=k$
Here $e_{h^{*}}(1)=\frac{k(k+1)}{2}, e_{h^{*}}(2)=\frac{(k+1)(3 k+2)}{2}$ and $e_{h^{*}}(3)=\frac{k(5 k+3)}{2}$.
Subcase(ii): $v_{h}(1)=v_{h}(3)=k+1, v_{h}(2)=k$
Here $e_{h^{*}}(1)=\frac{k(k+1)}{2}, e_{h^{*}}(2)=\frac{k(3 k+1)}{2}$ and $e_{h^{*}}(3)=\frac{(k+1)(5 k+2)}{2}$.
Subcase(iii): $v_{h}(2)=v_{h}(3)=k+1, v_{h}(1)=k$
Here $e_{h^{*}}(1)=\frac{k(k-1)}{2}, e_{h^{*}}(2)=\frac{3 k(k \mp 1)}{2}$ and $e_{h^{*}}(3)=\frac{(k+1)(5 k+2)}{2}$.
In each subcase $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right|>1$ for all $k \geq 3$ and $i \neq j$, which is a contradiction. If $k=1$ or $2,\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|>1$, which is a contradiction.

Hence K_{n} is not a Lehmer-3 mean cordial graph for all $n \geq 3$.

Theorem 2.4. The pinwheel graph $P W_{n}$ is a Lehmer- 3 mean cordial graph.
Proof. Let G be the pinwheel graph $P W_{n}$. Let $x, x_{i}, y_{i}, z_{i}(1 \leq i \leq n)$ be the vertices of G and let $x x_{i}, x y_{i}, x_{i} y_{i}, x_{i} z_{i}, y_{i} z_{i}(1 \leq i \leq n)$ be the edges of G. Define $h: V(G) \rightarrow\{1,2,3\}$ as follows:
Case(i): $n \equiv 0(\bmod 3)$

Let $n=3 k$, where k is any positive integer. Define $h: V(G) \rightarrow\{1,2,3\}$ by $h(x)=1$ and
$h\left(x_{i}\right)=h\left(y_{i}\right)=h\left(z_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\ 2 & \text { if } k+1 \leq i \leq 2 k \\ 3 & \text { if } 2 k+1 \leq i \leq 3 k\end{cases}$
Here the number of vertices and edges labeled with $i \in\{1,2,3\}$ are $v_{h}(1)=\left\lceil\frac{3 n+1}{3}\right\rceil$,
$v_{h}(2)=v_{h}(3)=\left\lfloor\frac{3 n+1}{3}\right\rfloor$ and $e_{h^{*}}(i)=\frac{5 n}{3}$.
Case(ii):n $\equiv 1(\bmod 3)$
Let $n=3 k+1$. Label the vertices of G as in case(i) for $1 \leq i \leq 3 k$. Also label the vertices x_{n}, y_{n}, z_{n} by $1,2,3$ respectively. Then the number of vertices and edges labeled with $i \in\{1,2,3\}$ are $v_{h}(1)=\left\lceil\frac{3 n+1}{3}\right\rceil, v_{h}(2)=v_{h}(3)=\left\lfloor\frac{3 n+1}{3}\right\rfloor, e_{h^{*}}(1)=\left\lfloor\frac{5 n}{3}\right\rfloor$ and $e_{h^{*}}(2)=e_{h^{*}}(3)=\left\lceil\frac{5 n}{3}\right\rceil$.

Case(iii): $n \equiv 2(\bmod 3)$

Let $n=3 k+2$. Label the vertices of G as in case(i) for $1 \leq i \leq 3 k$. Also label the vertices $x_{n-1}, y_{n-1}, z_{n-1}$ by $1,1,2$ respectively and x_{n}, y_{n}, z_{n} by $2,3,3$ respectively.

Then the number of vertices and edges labeled with $i \in\{1,2,3\}$ are $v_{h}(1)=\left\lceil\frac{3 n+1}{3}\right\rceil$, $v_{h}(2)=v_{h}(3)=\left\lfloor\frac{3 n+1}{3}\right\rfloor, e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lfloor\frac{5 n}{3}\right\rfloor$ and $e_{h^{*}}(3)=\left\lceil\frac{5 n}{3}\right\rceil$.

In each case $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence G admits Lehmer-3 mean cordial labeling.

Theorem 2.5. The graph $L_{n} \odot K_{1}$ is a Lehmer-3 mean cordial graph.
Proof. Le G be the graph $L_{n} \odot K_{1}$. Let $x_{i}, y_{i}(1 \leq i \leq n)$ be the vertices of L_{n} and $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}(1 \leq i \leq n)$ be the added vertices to form G. Define $h: V(G) \rightarrow\{1,2,3\}$ as follows: Case(i): $n \equiv 0(\bmod 3)$
$h\left(x_{i}\right)=h\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq \frac{n}{3}+1 \\ 2 & \text { if } \frac{n}{3}+2 \leq i \leq \frac{2 n}{3} \\ 3 & \text { if } \frac{2 n}{3}+1 \leq i \leq n\end{cases}$
$h\left(x_{i}^{\prime}\right)=h\left(y_{i}^{\prime}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq \frac{n}{3}-1 \\ 2 & \text { if } \frac{n}{3} \leq i \leq \frac{2 n}{3} \\ 3 & \text { if } \frac{2 n}{3}+1 \leq i \leq n\end{cases}$
Here the number of vertices and edges labeled with $i \in\{1,2,3\}$ are $v_{h}(i)=\frac{4 n}{3}$,
$e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lfloor\frac{5 n-2}{3}\right\rceil$ and $e_{h^{*}}(3)=\left\lceil\frac{5 n-2}{3}\right\rceil$.
Case(ii): $n \equiv 1(\bmod 3)$
$h\left(x_{i}\right)=h\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq i \leq n\end{cases}$
$h\left(x_{i}{ }^{\prime}\right)=\left\{\begin{array}{ll}1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq i \leq n\end{array} \quad\right.$ and $\quad h\left(y_{i}{ }^{\prime}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq i \leq\left\lfloor\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil \leq i \leq n\end{cases}$
Here $v_{h}(1)=\left\lceil\frac{4 n}{3}\right\rceil, v_{h}(2)=v_{h}(3)=\left\lfloor\frac{4 n}{3}\right\rfloor$ and $e_{h^{*}}(i)=\frac{5 n-2}{3}$ for all $i \in\{1,2,3\}$.
Case(iii): $n \equiv 2(\bmod 3)$
Label the vertices $x_{i}, y_{i}(1 \leq i \leq n)$ as in case(ii). Also label the vertices $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}(1 \leq i \leq n)$ by
$h\left(x_{i}^{\prime}\right)=\left\{\begin{array}{ll}1 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lfloor\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{\lceil n}{3}\right\rceil \leq i \leq n\end{array} \quad\right.$ and $h\left(y_{i}{ }^{\prime}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq i \leq\left\lfloor\frac{2 n}{3}\right\rfloor-1 \\ 3 & \text { if } \frac{2 n}{3} \leq i \leq n\end{cases}$
Here $v_{h}(1)=v_{h}(3)=\left\lceil\frac{4 n}{3}\right\rceil, v_{h}(2)=\left\lfloor\frac{4 n}{3}\right\rceil, e_{h^{*}}(1)=\left\lfloor\frac{5 n-2}{3}\right\rceil$ and $e_{h^{*}}(2)=e_{h^{*}}(3)=\left\lceil\frac{5 n-2}{3}\right\rceil$.
In each case $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence G admits Lehmer- 3 mean cordial labeling.

Theorem 2.6. The graph $C L_{n} \odot K_{1}$ is a Lehmer-3 mean cordial graph iff $n \neq 3$
Proof. Let G be the graph $C L_{n} \odot K_{1}$. Let $x_{i}, y_{i}(1 \leq i \leq n)$ be the vertices of $C L_{n}$ and
$x_{i}{ }^{\prime}, y_{i}{ }^{\prime}(1 \leq i \leq n)$ be the added vertices to form G.
Let $n=3$. Then $|V(G)|=6$ and $|E(G)|=9$. Take $v_{h}(i)=2$ for all $i, j \in\{1,2,3\}$. Then $e_{h^{*}}(1)$ is either 0 or 1 and so $\left|e_{h^{*}}(1)-e_{h^{*}}(2)\right|>1$ or $\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|>1$ or $\left|e_{h^{*}}(2)-e_{h^{*}}(3)\right|>1$. Thus G is not a Lehmer-3 mean cordial graph.

Suppose that $n \neq 3$. Define $h: V(G) \rightarrow\{1,2,3\}$ as follows:
Case($i): n \equiv 0(\bmod 3)$ and $n \neq 3$.
Subcase(i): n is odd
$h\left(x_{i}\right)=1$ for $1 \leq i \leq n-2, h\left(x_{n-1}\right)=h\left(x_{n}\right)=2$,
$h\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq \frac{n}{3}+2 \\ 2 & \text { if } \frac{n}{3}+3 \leq i \leq \frac{2 n}{3}+1 \\ 3 & \text { if } \frac{2 n}{3}+2 \leq i \leq n\end{cases}$
$h\left(x_{i}{ }^{\prime}\right)=h\left(y_{i}{ }^{\prime}\right)= \begin{cases}2 & \text { if } 1 \leq i \leq \frac{n}{3}+1 \\ 3 & \text { if } \frac{n}{3}+2 \leq i \leq n\end{cases}$
Subcase(ii): n is even
Label the vertices $x_{i}, y_{i}(1 \leq i \leq n)$ and $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}\left(i \neq \frac{n}{3}+1\right)$ as in subcase(i). If $i=\frac{n}{3}+1$, label the vertex $x_{i}{ }^{\prime}$ by 2 and $y_{i}{ }^{\prime}$ by 3 .

In both subcases, the number of vertices and edges labeled with $i \in\{1,2,3\}$ are $v_{h}(i)=\frac{4 n}{3}$ and $e_{h^{*}}(i)=\frac{5 n}{3}$.

Case(ii):n $\equiv 1(\bmod 3)$
Subcase(i): n is even
$h\left(x_{i}\right)=1$ for $1 \leq i \leq n$
$h\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq i \leq n\end{cases}$

Subcase(ii): n is odd
Label the vertices $x_{i}, y_{i}(1 \leq i \leq n)$ and $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}\left(i \neq\left\lceil\frac{n}{3}\right\rceil\right)$ as in subcase(i). If $i=\left\lceil\frac{n}{2}\right\rceil$, label the vertex $x_{i}{ }^{\prime}$ by 2 and $y_{i}{ }^{\prime}$ by 3 .

In both subcases, $v_{h}(1)=\left\lceil\frac{4 n}{3}\right\rceil, \quad v_{h}(2)=v_{h}(3)=\left\lfloor\frac{4 n}{3}\right\rceil, \quad e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lceil\frac{5 n}{3}\right\rceil$ and $e_{h^{*}}(3)=\left\lfloor\frac{5 n}{3}\right\rfloor$.

Case(iii):n $\equiv 2(\bmod 3)$

Subcase(i): n is odd
$h\left(x_{i}\right)=1$ for $1 \leq i \leq n$
$h\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil \leq i \leq n\end{cases}$
$h\left(x_{i}{ }^{\prime}\right)=h\left(y_{i}{ }^{\prime}\right)= \begin{cases}2 & \text { if } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ 3 & \text { if }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n\end{cases}$
Subcase(ii): n is even
Label the vertices $x_{i}, y_{i}(1 \leq i \leq n)$ and $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}\left(i \neq\left\lceil\frac{n}{3}\right\rceil+1\right)$ as in subcase(i). If $i=\left\lceil\frac{n}{2}\right\rceil+1$, label the vertex $x_{i}{ }^{\prime}$ by 2 and $y_{i}{ }^{\prime}$ by 3 .

In both subcases, $v_{h}(1)=v_{h}(2)=\left\lceil\frac{4 n}{3}\right\rceil, \quad v_{h}(3)=\left\lfloor\frac{4 n}{3}\right\rfloor e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lfloor\frac{5 n}{3}\right\rfloor$ and $e_{h^{*}}(3)=\left\lceil\frac{5 n}{3}\right\rceil$.

In each case, $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence $C L_{n} \odot K_{1}$ admits Lehmer-3 mean cordial labeling.

Theorem 2.7. An armed crown graph $A C_{m, n}$ is a Lehmer- 3 mean cordial graph.
Proof. Let $G=A C_{m, n}$. Let $x_{i}(1 \leq i \leq m)$ be the vertices of the cycle C_{m} and let
$x_{i j}(1 \leq i \leq m ; 1 \leq j \leq n)$ be the vertices of the paths attached at each x_{i}. Then
$E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{x_{m} x_{1}\right\} \cup\left\{x_{i} x_{i 1}: 1 \leq i \leq m\right\} \cup$
$\left\{x_{i j} x_{i(j+1)}: 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}$. Define $h: V(G) \rightarrow\{1,2,3\}$ as follows:
Case $(i): m \equiv 0(\bmod 3)$
Let $m=3 k$. Then $h\left(x_{i}\right)=1$ for $1 \leq i \leq m$,
$h\left(x_{i j}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq k \\ 3 \text { if } k+1 \leq i \leq 2 k\end{array}\right.$ for $1 \leq j \leq n$
$h\left(x_{i j}\right)=1$ for $2 k+1 \leq i \leq m$ and $1 \leq j \leq n-2$
$h\left(x_{(m-1)(n-1)}\right)=h\left(x_{m(n-1)}\right)=2$ and $h\left(x_{(m-1) n}\right)=h\left(x_{m n)}\right)=3$
Here $v_{h}(i)=e_{h^{*}}(i)=\frac{m(n+1)}{3}$ for all $i \in\{1,2,3\}$.
Case(ii):m $\equiv 1(\bmod 3)$
Let $m=3 k+1$. Label the vertices $x_{i}(1 \leq i \leq m), x_{i j}(1 \leq i \leq 3 k ; 1 \leq j \leq n)$ as in case(i) and the remaining vertices as follows:
Subcase $(i): n \equiv 0(\bmod 3)$

$$
h\left(x_{m j}\right)=\left\{\begin{array}{l}
1 \text { if } 1 \leq j \leq \frac{n}{3} \\
2 \text { if } \frac{n}{3}+1 \leq j \leq \frac{2 n}{3} \\
3 \text { if } \frac{2 n}{3}+1 \leq j \leq n
\end{array}\right.
$$

Here $v_{h}(1)=e_{h^{*}}(1)=\left\lceil\frac{m(n+1)}{3}\right\rceil, v_{h}(2)=e_{h^{*}}(2)=v_{h}(3)=e_{h^{*}}(3)=\left\lfloor\frac{m(n+1)}{3}\right\rfloor$
Subcase(ii): $n \equiv 1(\bmod 3)$
$h\left(x_{m j}\right)= \begin{cases}1 & \text { if } 1 \leq j \leq\left\lceil\frac{n}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq j \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 3 \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq j \leq n\end{cases}$
Here $v_{h}(1)=e_{h^{*}}(1)=v_{h}(2)=e_{h^{*}}(2)=\left\lceil\frac{m(n+1)}{3}\right\rceil, v_{h}(3)=e_{h^{*}}(3)=\left\lfloor\frac{m(n+1)}{3}\right\rfloor$
Subcase(iii): $n \equiv 2(\bmod 3)$
$h\left(x_{m j}\right)= \begin{cases}1 & \text { if } 1 \leq j \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq j \leq\left\lfloor\frac{2 n}{3}\right. \\ 3 & \text { if }\left\lceil\frac{2 n}{3}\right\rceil \leq j \leq n\end{cases}$
Here $v_{h}(i)=e_{h^{*}}(i)=\frac{m(n+1)}{3}$ for all $i \in\{1,2,3\}$.
Case(iii): $m \equiv 2(\bmod 3)$
Let $m=3 k+2$. Label the vertices $x_{i}(1 \leq i \leq m), x_{i j}(1 \leq i \leq 3 k ; 1 \leq j \leq n)$ as in case(i) and the remaining vertices as follows:

Subcase(i): $n \equiv 0(\bmod 3)$
$h\left(x_{(m-1) j}\right)=\left\{\begin{array}{ll}1 & \text { if } 1 \leq j \leq \frac{n}{3}-1 \\ 2 & \text { if } \frac{n}{3} \leq j \leq n\end{array}\right.$ and $h\left(x_{m j}\right)= \begin{cases}1 & \text { if } 1 \leq j \leq \frac{n}{3} \\ 3 & \text { if } \frac{n}{3}+1 \leq j \leq n\end{cases}$
Here $v_{h}(1)=e_{h^{*}}(1)=v_{h}(2)=e_{h^{*}}(2)=\left\lceil\frac{m(n+1)}{3}\right\rceil, v_{h}(3)=e_{h^{*}}(3)=\left\lfloor\frac{m(n+1)}{3}\right\rfloor$.
Subcase(ii): $n \equiv 1,2(\bmod 3)$
$h\left(x_{(m-1) j}\right)=\left\{\begin{array}{ll}1 & \text { if } 1 \leq j \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 2 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq j \leq n\end{array} \quad\right.$ and $h\left(x_{m j}\right)= \begin{cases}1 & \text { if } 1 \leq j \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 3 & \text { if }\left\lceil\frac{n}{3}\right\rceil \leq j \leq n\end{cases}$
Here $v_{h}(1)=e_{h^{*}}(1)=\left\lceil\frac{m(n+1)}{3}\right\rceil, v_{h}(2)=e_{h^{*}}(2)=v_{h}(3)=e_{h^{*}}(3)=\left\lfloor\frac{m(n+1)}{3}\right\rfloor$.
In each case $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence G is a Lehmer-3 mean cordial graph.

Theorem 2.8. The graph $G(p, q)$ obtained by identifying the end vertices of the path P_{t} on the caterpillar graph $C P_{t}$ is a Lehmer-3 mean cordial graph iff any one of the following hold:
(i) $s+t \equiv 0$ or $2(\bmod 3)$
(ii) $s+t \equiv 1(\bmod 3)$ and $s \geq 2(t-1)$,
where s is the number of pendant vertices of G.
Proof. Let x_{1} be the identified vertex of G. Let s be the number of pendant vertices of G. Then $p=q=s+t-1$. Also G contains a cycle of length $t-1$.
Case(i):s $+t \equiv 0$ or $2(\bmod 3)$

If l_{1} pendant vertices are adjacent to x_{1}, denote these vertices by $x_{2}, x_{3}, \ldots, x_{l_{1}+1}$. Let $x_{l_{1}+2}$ be the vertex which is adjacent to x_{1} on the cycle. If l_{2} pendant vertices are adjacent to $x_{l_{1}+2}$, denote these vertices by $x_{l_{1}+3}, \ldots, x_{l_{1}+l_{2}+2}$. Let $x_{l_{1}+l_{2}+3}$ be the vertex which is adjacent to $x_{l_{1}+2}$ on the cycle and continue the same process to denote the vertices of G. Define $h: V(G) \rightarrow\{1,2,3\}$ by $h\left(x_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq\left\lceil\frac{p}{3}\right\rceil \\ 2 & \text { if }\left\lceil\frac{p}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 p}{3}\right\rceil \\ 3 & \text { if }\left\lceil\frac{2 p}{3}\right\rceil+1 \leq i \leq n\end{cases}$
Then the number of vertices and edges labeled with $i \in\{1,2,3\}$ are as follows:
Subcase $(i): p \equiv 1(\bmod 3)$

$$
v_{h}(1)=\left\lceil\frac{p}{3}\right\rceil, v_{h}(2)=v_{h}(3)=\left\lfloor\frac{p}{3}\right\rfloor, e_{h^{*}}(1)=e_{h^{*}}(2)=\left\lfloor\frac{p}{3}\right\rceil \text { and } e_{h^{*}}(3)=\left\lceil\frac{p}{3}\right\rceil .
$$

Subcase(ii):p $\equiv 2(\bmod 3)$

$$
v_{h}(1)=v_{h}(2)=\left\lceil\frac{p}{3}\right\rceil, v_{h}(3)=\left\lfloor\frac{p}{3}\right\rfloor, e_{h^{*}}(1)=\left\lfloor\frac{p}{3}\right\rfloor \text { and } e_{h^{*}}(2)=e_{h^{*}}(3)=\left\lceil\frac{p}{3}\right\rceil .
$$

In each subcase $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in\{1,2,3\}$. Hence G is a Lehmer-3 mean cordial graph.

Case(ii): $s+t \equiv 1(\bmod 3)$ and $s \geq 2(t-1)$.
Let $x_{1}, x_{2}, \ldots, x_{t-1}$ be the path on the cycle. If $k_{1}, k_{2}, \ldots, k_{t-1}$ pendant vertices are adjacent to $x_{1}, x_{2}, \ldots, x_{t-1}$ respectively, denote these vertices by $x_{t}, x_{t+1}, \ldots, x_{t+k_{1}-1}, x_{t+k_{1}}$, $\ldots, x_{t+k_{1}+k_{2}-1}, \ldots, x_{n}$. Then label the vertices of G as in case(i).

Here $v_{h}(i)=e_{h^{*}}(i)=\frac{p}{3}$ for all $i \in\{1,2,3\}$. Hence G is a Lehmer- 3 mean cordial graph. Case(iii):s $+t \equiv 1(\bmod 3)$ and $s<2(t-1)$.

Suppose that G admits Lehmer-3 mean cordial labeling. Then $v_{h}(i)=\frac{s+t-1}{3}$ for all $i \in\{1,2,3\}$. To obtain the edge conditions we must label the vertices as in case(i) or case(ii). In both cases, $e_{h^{*}}(1)=v_{h}(1)-1$. Then $\left|e_{h^{*}}(1)-e_{h^{*}}(2)\right|>1$ or $\left|e_{h^{*}}(1)-e_{h^{*}}(3)\right|>1$ or $\left|e_{h^{*}}(2)-e_{h^{*}}(3)\right|>1$, which is a contradiction. Hence G is not a Lehmer-3 mean cordial graph.

Example 2.9. The Lehmer-3 mean cordial labeling of the graph G obtained by identifying the end vertices of the path P_{8} on the caterpillar graph $C P_{7}$ is shown in figure 2.

Figure 2

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol 23, pp. 201-207, 1987.
[2] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic J. Combin., (2019).
[3] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1972).
[4] D. Jaspin Jeba, G. Sudhana, I_{n} - Mean Cordial Graphs, Turkish Online Journal of Qualitative Inquiry (TOJQI), Volume 12, Issue 9, August 2021: 8055-8061.
[5] D. Jaspin Jeba, G. Sudhana, I_{2} - Mean Cordial Labeling of Some Graphs, Shodhasamhita: Journal of Fundamental \& Comparative Research, Vol. VIII, No. I(XVII): 2022, 22777067.
[6] R. Ponraj, M. Sivakumar, M. Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics, 2012, 2, 145-148 .

