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Abstract 

Spectacular progress in the information processing sci- ences (machine learning, wearable sensors) promises to revo- lutionize the 

study of cognitive development. Here, we anal- yse the conditions under which ’reverse engineering’ lan- guage development, i.e., 

building an effective system that mimics infant’s achievements, can contribute to our scien- tific understanding of early language 

development. We argue that, on the computational side, it is important to move from toy problems to the full complexity of the 

learning situation, and take as input as faithful reconstructions of the sensory signals available to infants as possible. On the data 

side, accessible but privacy-preserving repositories of home data have to be setup. On the psycholinguistic side, specific tests have to 

be constructed to benchmark humans and machines at different linguistic levels. We discuss the feasibility of this approach and 

present an overview of current results. 
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Introduction 

In recent years, artificial intelligence (AI) has been hit- ting the headlines with impressive achievements at matching or even beating 

humans in complex cognitive tasks (playing go or video games: Mnih et al., 2015; Silver et al., 2016; processing speech and natural 

language: Amodei et al., 2016; Ferrucci, 2012; recognizing objects and faces: He, Zhang, Ren, & Sun, 2015; Lu & Tang, 2014) and 

promising a revolution in manufacturing processes and human society at large. These successes show that with statistical learning 

techniques, powerful computers and large amounts of data, it is possible to mimic important components of human cognition. 

Shockingly, some of these achievements have been reached by throwing out some of the classical theories in lin- guistics and 

psychology, and by training relatively unstruc- tured neural network systems on large amounts of data. What does it tell us about the 

underlying psychological and/or neu- ral processes that are used by humans to solve these tasks? Can AI provide us with scientific 

insights about human learn- ing and processing? 

Here, we argue that developmental psychology and in par- ticular, the study of language acquisition is one area where, indeed, AI 

and machine learning advances can be transfor- mational, provided that the involved fields make significant adjustments in their 

practices in order to adopt what we call the reverse engineering approach. Specifically: 
 

The reverse engineering approach to the study of infant language acquisition consists in con- structing scalable computational 

systems that can, when fed with realistic input data, mimic language acquisition as it is observed in infants. 
 

The three italicised terms will be discussed at length in subsequent sections of the paper. For now, only an intuitive understanding of 

these terms will suffice. The idea of us- ing machine learning or AI techniques as a means to study child’s language learning is 

actually not new (to name a few: Kelley, 1967; Anderson, 1975; Berwick, 1985; Rumelhart & McClelland, 1987; Langley & 

Carbonell, 1987) although 

relatively few studies have concentrated on the early phases of language learning (see Brent, 1996b, for a pioneering col- lection of 

essays). What is new, however, is that whereas previous AI approaches were limited to proofs of principle on toy or miniature 

languages, modern AI techniques have scaled up so much that end-to-end language processing sys- tems working with real inputs 

are now deployed commer- cially. This paper examines whether and how such unprece- dented change in scale could be put to use  

to address linger- ing scientific questions in the field of language development. The structure of the paper is as follows: In Section 2, 

we present two deep scientific puzzles that large scale modeling approaches could in principle address: solving the bootstrap- ping 

problem, accounting for developmental trajectories. In Section 3, we review past theoretical and modeling work, showing that these 

puzzles have not, so far, received an ad- equate answer. In Section 4, we argue that to answer them with reverse engineering, three 

requirements have to be ad- dressed: (1) modeling should be computationally scalable, 

(2) it should be done on realistic data, (3) model performance should be compared with that of humans. In Section 5, re- cent 

progress in AI is reviewed in light of these three require- ments. In Section 6, we assess the feasibility of the reverse engineering 

approach and lay out the road map that has to be followed to reach its objectives 

, and we conclude in Section 7. 
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2 Two deep puzzles of early language development 

Language development is a theoretically important sub- field within the study of human cognitive development for the following 

three reasons: 

First, the linguistic system is uniquely complex: mastering a language implies mastering a combinatorial sound system (phonetics 

and phonology), an open ended morphologically structured lexicon, and a compositional syntax and seman- tics (e.g., Jackendoff, 

1997). No other animal communica- tion system uses such a complex multilayered organization (Hauser, Chomsky, & Fitch, 2002). 

On this basis, it has been claimed that humans have evolved (or acquired through a mutation) an innately specified computational 

architecture to process language (see Chomsky, 1965; Steedman, 2014). 

Second, the overt manifestations of this system are ex- tremely variable across languages and cultures. Language can be expressed 

through the oral or manual modality. In the oral modality, some languages use only 3 vowels, other more than 20. Consonants 

inventories vary from 6 to more than 100. Words can be mostly composed of a single sylla- ble (as in Chinese) or long strings of 

stems and affixes (as in Turkish). Semantic roles can be identified through fixed positions within constituents, or be identified 

through func- tional morphemes, etc. (see Song, 2010, for a typology of language variation). Evidently, infants acquire the relevant 

variant through learning, not genetic transmission. 

Third, the human language capacity can be viewed as a finite computational system with the ability to generate a (virtual) infinity of 

utterances. This turns into a learnabil- ity problem for infants: on the basis of finite evidence, they have to induce the (virtual) 

infinity corresponding to their language. As has been discussed since Aristotle, such induc- tion problems do not have a generally 

valid solution. There- fore, language is simultaneously a human-specific biological trait, a highly variable cultural production, and an 

apparently intractable learning problem. 

Despite these complexities, most infants spontaneously learn their native(s) language(s) in a matter of a few years of immersion in a 

linguistic environment. The more we know about this simple fact, the more puzzling it appears. Specifi- cally, we outline two deep 

scientific puzzles that a reverse en- gineering approach could, in principle help to solve: solving the bootstrapping problem and 

accounting for developmental trajectories. The first puzzle relates to the ultimate outcome of language learning: the so-called stable 

state, defined here as the stabilized language competence in the adult. The sec- ond puzzle relates to what we know of the 

intermediate steps in the acquisition process, and their variations as a function of language input.1 
Solving the bootstrapping problem 

The stable state is the operational knowledge which en- ables adults to process a virtual infinity of utterances in their native language. 

The most articulated description of this stable state has been offered by theoretical linguistics; it is viewed as a grammar comprising 

several components: pho- netics, phonology, morphology, syntax, semantics, pragmat- ics. 

The bootstrapping problem arises from the fact these dif- ferent components appear interdependent from a learning point of view. 

For instance, the phoneme inventory of a lan- guage is defined through pairs of words that differ minimally in sounds (e.g., "light" vs 

"right"). This would suggest that to learn phonemes, infants need to first learn words. However, from a processing viewpoint, words 

are recognized through their phonological constituents (e.g., Cutler, 2012), suggest- ing that infants should learn phonemes before 

words. Sim- ilar paradoxical co-dependency issues have been noted be- tween other linguistic levels (for instance, syntax and seman- 

tics: Pinker, 1987, prosody and syntax: Morgan & Demuth, 1996). In other words, in order to learn any one component of the 

language competence, many others need to belearned first, creating apparent circularities. 

. 

The bootstrapping problem is further compounded by the fact that infants do not have to be taught formal linguistics or language 

courses to learn their native language(s). As in other cases of animal communication, infants spontaneously acquire the language(s) 

of their community by merely be- ing immersed in that community (Pinker, 1994). Experimen- tal and observational studies have 

revealed that infants start acquiring elements of their language (phonetics, phonol- ogy, lexicon, syntax and semantics) even before 

they can talk (Jusczyk, 1997; Hollich et al., 2000; Werker & Curtin, 2005), and therefore before parents can give them much feed- 

back about their progress into language learning. This sug- gests that language learning (at least the initial bootstrapping steps) occurs 

largely without supervisory feedback.2 

The reverse engineering approach has the potential of solving this puzzle by providing a computational system that can demonstrably 

bootstrap into language when fed with similar, supervisory poor, inputs3. 

 

Accounting for developmental trajectories 

In the last forty years, a large body of empirical work has been collected regarding infant’s language achievements dur- ing their first 

years of life. This work has only added more puzzlement. 

First, given the multi-layered structure of language, one could expect a stage-like developmental tableau where ac- quisition would 

proceed as a discrete succession of learning phases organized logically or hierarchically (e.g., building linguistic structure from the 

low level to the high levels). This is not what is observed (see Figure 1). For instance, infants start differentiating native from foreign 

consonants and vowels at 6 months, but continue to fine tune their pho- netic categories well after the first year of life (e.g., Sun- 

dara, Polka, & Genesee, 2006). However, they start learning about the sequential structure of phonemes (phonotactics, see Jusczyk, 

Friederici, Wessels, Svenkerud, & Jusczyk, 1993) way before they are done acquiring the phoneme inventory (Werker & Tees, 1984). 

Even before that, they start acquiring the meaning of a small set of common words (e.g. Bergelson & Swingley, 2012). In other 

words, instead of a stage-like developmental tableau, the evidence shows that acquisition takes places at all levels more or less 

simultaneously, in a gradual and largely overlapping fashion. 
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Second, observational studies have revealed considerable variations in the amount of language input to infants across cultures 

(Shneidman & Goldin-Meadow, 2012) and across socio-economic strata (Hart & Risley, 1995), some of which can exceed an order 

of magnitude (Weisleder & Fernald, 2013, p. 2146; Cristia, Dupoux, Gurven, & Stieglitz, 2017; see also Supplementary Section S1). 

These variations do im- pact language achievement as measured by vocabulary size and syntactic complexity (Hoff, 2003; 

Huttenlocher, Water- fall, Vasilyeva, Vevea, & Hedges, 2010; Pan, Rowe, Singer, 

& Snow, 2005; Rowe & Goldin-Meadow, 2009, among oth- ers), but at least for some markers of language achievement, the 

differences in outcome are much less extreme than the variations in input. For canonical babbling, for instance, an order of 

magnitude would mean that some children start to babble at 6 months, and others at 5 years! The observed range is between 6 and 10 

months, less than a 1 to 2 ratio. Similarly, reduced range of variations are found for the onset of word production and the onset of 

word combinations. This suggests a surprising level of resilience in language learning, i.e., some minimal amount of input is 

sufficient to trigger certain landmarks. 

The reverse engineering approach has the potential of accounting for this otherwise perplexing developmental tableau, and provide 

quantitative predictions both across lin- guistic levels (gradual overlapping pattern), and cultural or individual variations in input 

(resilience). 

 
3 Standard approaches to language development 

It is impossible in limited space to do justice to the rich and diverse sets of viewpoints that have been proposed to account for 

language development. Instead, the next sec- tions will present a non exhaustive selection of four research strands which draw their 

source of inspiration from a mix- ture of psycholinguistics, formal linguistics and computer science, and which share some of the 

explanatory goals of the reverse engineering approach. The argument will be that even though these strands provide important 

insights into the acquisition process, they still fall short of accounting for the two puzzles presented in Section 2. 

 
3.1 Psycholinguistics: Conceptual frameworks 

Within developmental psycholinguistics, conceptual frameworks have been proposed to account for key aspects of the bootstrapping 

problem and developmental trajectories (see Table 1 for a non exhaustive sample). 

Specifically adressing the bootstrapping problem, some frameworks build on systematic correlations between lin- guistic levels, e.g., 

between syntactic and semantic cat- egories (syntactic bootstrapping: L. Gleitman, 1990; se- mantic bootstrapping: Grimshaw, 1981; 

Pinker, 1984), or between prosodic boundaries and syntactic ones (prosodic bootstrapping: Morgan & Demuth, 1996; Christophe, 

Mil- lotte, Bernal, & Lidz, 2008. Others endorse Chomsky’s 

2Even in later acquisitions, the nature, universality and effective- ness of corrective feedback of children’s outputs has been debated (see Brown, 

1973; Pinker, 1989; Marcus, 1993; Chouinard & Clark, 2003; Saxton, 1997; Clark & Lappin, 2011). 
3A sucessful system may not necessarily have the same archi- tecture of components as described by theoretical linguists. It just needs to behave as 

humans do, i.e., pass the same behavioral tests. More on this in section 4.3. (1965) hypothesis that infants are equipped with an innate 

Language Acquisition Device which constrains the hypothe- sis space of the learner, enabling acquisition in the presence of scarse or 

ambiguous input (Crain, 1991; Lidz & Gagliardi, 2015). 

Other conceptual frameworks focus on key aspects of de- velopmental trajectories (patterns across ages, across lan- guages, across 

individuals), offering overarching architec- tures or scenarios that integrate many empirical results. Among others, the competition 

model: Bates & MacWhin- ney, 1987; MacWhinney, 1987 ; WRAPSA: Jusczyk, 1997; the emergentist coalition model: Hollich et 

al., 2000; PRIMIR: Werker & Curtin, 2005; usage-based theory: Tomasello, 2003. Each of these frameworks propose a col- lection 

of mechanisms linked to the linguistic input and/or the social environment of the infant to account for develop- mental trajectories. 

While these conceptual framework are very useful in sum- marizing and organizing a vast amount of empirical results, and offer 

penetrating insights, they are not specific enough to address our two scientific puzzles. They tend to refer to mechanisms using 

verbal descriptions (statistical learning, rule learning, abstraction, grammaticalization, analogy) or boxes and arrows diagrams. This 

type of presentation may be intuitive, but also vague. The same description may cor- respond to many different computational 

mechanisms which would yield different predictions. These frameworks are therefore difficult to distinguish from one another 

empiri- 

cally, or for the most descriptive ones, impossible to dis- prove. In addition, because they are not formal, one cannot demonstrate that 

these models can effectively solve the lan- guage bootstrapping problem. Nor do they provide quantita- tive predictions about the 

observed resilience in developmen- tal trajectories or their variations as a function of language input at the individual, linguistic or 

cultural level. 

 
3.2 Psycholinguistics: Artificial language learning 

Psycholinguists sometimes supplement conceptual frame- works with propositions for specific learning mechanisms which are 

tested using an artificial language paradigm. As an example, a mechanism based on the tracking of statis- tical modes in phonetic 

space has been proposed to under- pin phonetic category learning in infancy. It was tested in infants through the presentation of a 

simplified language (a continuum of syllables between /da/ and /ta/) where the sta- tistical distribution of acoustic tokens was 

controlled (Maye, Werker, & Gerken, 2002). It was also modeled computation- ally using unsupervised clustering algorithms and 

tested us- ing simplified corpora or synthetic data (Vallabha, McClel- land, Pons, Werker, & Amano, 2007; McMurray, Aslin, & 
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Toscano, 2009). A similar double-pronged approach (exper- imental and modeling evidence) has been conducted for other 

mechanisms: word segmentation based on transition proba- bility (Saffran, Aslin, & Newport, 1996; Daland & Pierre- humbert, 

2011), word meaning learning based on cross sit- 

 
3.3 Formal linguistics: learnability studies 

Even though much of current theoretical linguistics is de- voted to the study of the language competence in the stable state, very 

interesting work has also been conducted in the area of formal models of grammar induction. These mod- els propose algorithms 

that are provably powerful enough to learn a fragment of grammar given certain assumptions about the input. For instance, Tesar 

and Smolensky (1998) pro- posed an algorithm that provided pairs of surface and under- lying word forms can learn the 

phonological grammar (see also Magri, 2015). Similar learnability assumptions and re- sults have been obtained for stress systems 

(Dresher & Kaye, 1990; Tesar & Smolensky, 2000). For learnability results of syntax, see Clark and Lappin (2011). 

These models establish important learnability results, and in particular, demonstrate that under certain hypotheses, a particular class 

of grammar is learnable. What they do not demonstrate however is that these hypotheses are met for 

infants. In particular, most grammar induction studies as- sume that infants have an error-free, adult-like symbolic rep- resentation of 

linguistic entities (e.g., phonemes, phonologi- cal features, grammatical categories, etc). Yet, perception is certainly not error-free, 

and it is not clear that infants have adult-like symbols, and if they do, how they acquired them. 

In other words, even though these models are more ad- vanced than psycholinguistic models in formally addressing the effectiveness 

of the proposed learning algorithms, it is not clear that they are solving the same bootstrapping problem than the one faced by 

infants. In addition, they typically lack a connection with empirical data on developmental trajecto- ries.4 

 
3.4 Developmental artificial intelligence 

The idea of using computational models to shed light on language acquisition is as old as the field of cognitive science itself, and a 

complete review would be beyond the scope of this paper. We mention some of the landmarks in this field which we refer to as 

developmental AI, separating three learning subproblems: syntax, lexicon, and speech. 
Computational models of syntax learning in infants can be roughly classified into two strands, one that learns from 

 

4A particular difficulty of formal models which lack a process- ing component is to account for the observed discrepancies between the 

developmental trajectories in perception (e.g. early phonotactic learning in 8-month-olds) and production (slow phonotactic learn- ing in one to 3- 

year-olds). 

strings of words alone, and one that additionally uses a con- ceptual representation of the utterance meaning. The first strand is 

illustrated by Kelley (1967). It views grammar in- duction as a problem of representing the input corpus with a grammar in the most 

compact fashion, using both a pri- ori constraints on the shape and complexity of the grammars and a measure of fitness of the 

grammar to the data (see de Marcken, 1996 for a probabilistic view). The first systems used artificial input (generated by a context 

free grammar) and part-of-speech tags (nouns, verbs, etc.) were provided as side-information. Since then, manual tagging has been 

replaced by automatic tagging using a variety of approaches (see Christodoulopoulos, Goldwater, & Steedman, 2010 for a review), 

and artificial datasets have been replaced by natural- istic ones (see D’Ulizia, Ferri, & Grifoni, 2011, for a review). The second strand 

can be traced back to Siklossy (1968), and makes the radically different hypothesis that language learn- ing is essentially a translation 

problem: children are provided with a parallel corpus of speech in an unknown language, and a conceptual representation of the 

corresponding mean- ing. The Language Acquisition System (LAS) of Anderson (1975) is a good illustration of this approach. It 

learns context-free parsers when provided with pairs of representa- tions of meaning (viewed as logical form trees) and sentences 

(viewed as a string of words, whose meaning are known). Since then, algorithms have been proposed to learn directly the meaning of 

words (e.g., cross-situational learning, see Siskind, 1996), context-free grammars have been replaced by more powerful ones (e.g. 

probabilistic Combinatorial Cate- gorical Grammar), and sentence meaning has been replaced by sets of candidate meanings with 

noise (although still gen- erated from linguistic annotations) (e.g., Kwiatkowski, Gold- water, Zettlemoyer, & Steedman, 2012). Note 

that both types of models take textual input, and therefore make the (incor- rect) assumption that infants are able to represent their 

input in terms of an error-free segmented string of words. 

Computational models of word discovery tackle the prob- lem of segmenting a continuous stream of phonemes into word-like units. 

One idea is to use distributional proper- ties that distinguish within word and between word phoneme sequences (Harris, 1954; 

Elman, 1990; Christiansen, Con- way, & Curtin, 2005). A second idea is to simultaneously build a lexicon and segment sentences 

into words (Olivier, 1968; de Marcken, 1996; Goldwater, 2007). These ideas are now frequently combined (Brent, 1996a; M. 

Johnson, 2008). In addition, segmentation models have been augmented by jointly learning the lexicon and morphological 

decomposi- tion (M. Johnson, 2008; Botha & Blunsom, 2013), or tack- ling phonological variation through the use of a noisy chan- 

nel model (Elsner, Goldwater, & Eisenstein, 2012). Note that all of these studies assume that speech is represented as an error-free 

string of adult-like phonemes, an assumption which cannot apply to early language learners. 

Finally, a few computational model have started to ad- dress language learning from raw speech. These have either concerned the 

discovery of phoneme-sized units, the discov- ery of words, or both. Several ideas have been proposed to discover phonemes from 

the speech signal (self organizing maps: Kohonen, 1988; clustering: Pons, Anguera, & Binefa, 2013; auto-encoders: Badino, 

Canevari, Fadiga, & Metta, 2014; HMMs: Siu, Gish, Chan, Belfield, & Lowe, 2013; etc.). Regarding words, D. K. Roy and Pentland 

(2002) pro- posed a model that learn both to segment continuous speech into words and map them to visual categories (through cross 

situational learning). This was one of the first models to work from a real speech corpus (parents interacting with their in- fants in a 
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semi-directed fashion), although the model used the output of a supervised phoneme recognizer. The ACORNS project (Boves, Ten 

Bosch, & Moore, 2007) used raw speech as input to discover candidate words (Ten Bosch & Cranen, 2007, see also Park & Glass, 

2008; Muscariello, Gravier, & Bimbot, 2009, etc.), or to learn word-meaning associations (see a review in Räsänen, 2012, and a 

comprehensive model in Räsänen & Rasilo, 2015), although the speech was col- lected in the laboratory, not in real life situations. 

In sum, developmental AI represents the clearest attempt so far of addressing the full bootstrapping problem. Yet, al- though one 

can see a clear progression, from simple models and toy examples, towards more integrative algorithms and more realistic datasets, 

there is still a large gap between mod- els that learn from speech, which are limited to the discovery or phonemes and word forms, and 

models that learn syntax and semantics, which only work from textual input. Until this gap is closed, it is not clear how the 

bootstrapping prob- lem as faced by infants can be solved. The research itself is unfortunately scattered in disjoint segments of the 

literature, with little sharing in algorithms, evaluation methods and cor- pora, making it difficult to compare the merits of the differ- 

ent ideas and register progress. Finally, even though most of these studies mention infants as a source of inspiration of the models, 

they seldom attempt to account for developmental trajectories. 

 
3.5 Summing up 

Psycholinguistic conceptual frameworks capture impor- tant insights about language development but are not spec- ified enough 

to demonstrably solve the bootstrapping prob- lem nor can they make quantitative predictions. Artificial language experiments yield 

interesting learning mechanisms aimed at explaining experimental data but not necessarily to scale up to larger or more noisy data. 

These limitations call for the need to develop effective computational models that work at scale. Both linguistic models and 

developmental AI attempt to effectively address the bootstrapping problem, but make unrealistic assumptions with respect to the input 

data (linguistic models take only symbolic input data, and most 

 

developmental AI models take either symbolic data or sim- plified inputs). As a result, these models may address a dif- ferent 

bootstrapping problem than the one faced by infants. This would call for the need to use realistic data as input for models. Both 

linguistic models and developmental AI mod- els take as their gold standard description of the stable state in adults. This may be fine 

when the objective is to explain ul- timate attainment (the bootstrapping problem), but does not enable to connect with learning 

trajectory data. This would call for a direct human-machine comparison, at all ages. 

Obiously, the four reviewed research traditions have lim- its but also address part of the language development puzzles (Table 2). 

Before examining how the reverse engineering approach could combine the best of these traditions, we ex- amine next with more 

scrutiny the requirements they have to meet in order to fully address these puzzles. 

 

4 The three requirements of the reverse engineering 

approach 

Here, we argue that to be of scientific import, models of development should (1) go beyond conceptual and box-and- arrow 

frameworks and be turned into effective, scalable com- putational systems, (2) go beyond toy data and be fed with realistic input, and 

(3) be evaluated through human/machine comparisons. 

 
2.1 Why scalable computational models? 

Scalable computational systems can provide a proof of principle that the bootstrappping problem can be solved, and generate 

quantitative predictions. But there is an even more compelling reason to strive for them: verbal resoning and toy models tend to badly 

misjudge how a combination of con- tradictory tendencies will play out in practice, resulting in sometimes spectacularly incorrect 

predictions. We illustrate this with three examples. 

’Easy’ problems proving difficult. 

How do infant learn phonemes? A popular hypothesis (’distributional learning’) states that they track the statisti- cal modes of 

speech sounds to construct phonetic categories (Maye et al., 2002). How do we turn such a verbal descrip- tion into a scalable 

algorithm? 

Vallabha et al. (2007) and McMurray et al. (2009), among others, have proposed that it can be done with unsupervised clustering 

algorithms. As it turns out, these algorithms were only validated only on toy data (points in formant space gen- erated from a Gaussian 

distribution) or on manually obtained measurments. This is a problem because many if not most clustering algorithms are sensitive to 

data size, variability and dimensionality (Fahad et al., 2014). When tested on continuous audio representations which are large, 

variable and of high dimension, very different result ensue. For in- stance, Varadarajan, Khudanpur, and Dupoux (2008) have shown 

that a clustering algorithm based on Hidden Markov Models and Gaussian mixtures does not converge on pho- netic segments, but 

rather, on much shorter (30 ms), highly context-sensitive acoustic clusters (see also Antetomaso et al., 2017). This is not surprising 

given that phonemes are not realized as discrete acoustic events but as complicated over- lapping gestures. For instance, a stop 

consonant surfaces as a burst, a closure, and formant transitions into the next seg- ment. 

This shows that contrary to the distributional learning hy- pothesis, finding phonetic units is not only a problem of clus- tering, it is 
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also includes continuous speech segmentation and contextual modeling. These problems are not independent and have therefore to be 

addressed jointly by the learning algorithms. Despite the optimistic conclusions of Vallabha et al. (2007) and McMurray et al.  

(2009), the unsupervised discovery of phonetic categories is still an unsolved prob- lem in speech technology (see Versteegh, 

Anguera, Jansen, & Dupoux, 2016; Dunbar et al., 2017). 

’Impossible’ approaches turning out feasible. The second example relates to the popular hypothesis that acquir- ing the meaning 

of words is essentially a problem of associ- ating word form to referents in the outside world (or to con- ceptual representations of 

these referents; see Bloom, 2000 for possible learning mechanisms). 

Under such a view, it would seem impossible to learn any word meaning from language input only. However, research in natural 

language processing has shown that it is in fact possible to derive an approximate representation of the word meanings using only 

coocurrence patterns within the verbal material itself. These distributional techniques (Landauer & 

Dumais, 1997; Mikolov, Chen, Corrado, & Dean, 2013) con- struct vector representation of word meanings which corre- late 

surprisingly well with human semantic similarity judg- ments (Turney & Pantel, 2010; Baroni, Dinu, & Kruszewski, 2014)5. Fourtassi 

and Dupoux (2014) found that it is pos- sible to derive such vectors even without any properly seg- mented lexicon, and even 

without adult-like phonetic cate- gories. It turns out that the approximate meaning representa- tion so derived can provide top-down 

feedback helping clus- tering phonetic information into phonemes. Thus, computa- tional systems can suggest a priori implausible, 

but poten- tially effective, mechanisms. The empirical validity of such mechanisms in infants remains to be tested. 

Statistically significant effects ending up unimportant. A third example relates to the so-called ’hyperspeech hypoth- esis’. It has 

been proposed that parents adapt their pattern of speech to infants in order to facilitate perception (Fernald, 2000). P. K. Kuhl et al. 

(1997) observed that parents tend to increase the separation between point vowels in child di- rected speech, possibly making them 

easier to learn. Yet, Ludusan, Seidl, Dupoux, and Cristia (2015) ran a word dis- covery algorithm borrowed from developmental AI 

on raw speech and failed to find any difference in word learning be- tween child and adult directed speech; if anything, the for- mer 

was slightly more difficult. This paradoxical result can be explained by the fact that in child directed speech, par- ents increase 

phonetic variability even more than they in- crease the separation between point vowels, the two effects not only cancel each other 

out, but even result in a small net degradation in category discriminability (Martin et al., 2015; see also McMurray, Kovack-Lesh, 

Goodwin, & McEchron, 2013; Guevara-Rukoz et al., 2017). The lesson is that it is only through a completely explicit model that the 

quantita- tive effect of linguistic and phonetic variables on learning can be assessed. 

 
2.2 Why using realistic data? 

We turn here to the most controversial of the three require- ments: the idea that one should address language learning in its full 

complexity by running computational models on in- puts that are as close as infants’ sensory signals as possible. 

This may seem an exageration. Simplification is the hallmark of the scientific method, which usually proceeds by breaking down 

complicated problems into smaller, more manageable ones. Here, we claim that an exception has to be made for language learnability. 

Why? In a nutshell: learning is a process whose outcome is exquisitely sensitive to details of the input signal. If one makes even 

slightly incorrect as- sumptions about the input of the learning process, one ends up studying a different learning problem altogether. 

We illus- trate this with three cases where simplifications is a learnabil- ity game changer. We conclude that since the learnability- 

relevant properties of infant’s input are currently unknown, 

the only possibility left is to go with the real thing. 

Data selection matters. The entire set of sensory stim- ulations available to the child is called the input. The sub- set of this input 

which is used to learn about the target lan- guage(s) is called the intake. The difference between input and intake defines a data 

selection problem which, we claim, is an important part of the learning problem itself. Unfortu- nately, many computational models 

of language acquisition short-circuit the selection problem and use human experts to prepare pre-selected and pre-cleaned data. We 

illustrate this with three data selection problems. 

The first problem relates to defining what counts as linguistic versus non-linguistic information. There is no language-universal 

answer to this question. For instance, gestures are typically para- or extra-linguistic in commu- nities using oral communication 

(Fowler & Dekle, 1991; Goldin-Meadow, 2005), but they are the main vehicle for language in sign language (Poizner, Klima, & 

Bellugi, 1987) which is learned by children in deaf or mixed hearing/deaf communities (Van Cleve, 2004). Within the auditory 

modal- ity, some vocal sounds like clicks are considered as non- linguistic in many languages, but in others they are used 

phonologically (Best, McRoberts, & Sithole, 1988); simi- larly for phonatory characteristics of vowels like breathiness and 

creakiness (Silverman, Blankenship, Kirk, & Ladefoged, 1995; Podesva, 2007). 

The second problem is that even if linguistic and non- linguistic signals are defined for a language, the actual un- mixing of these 

signals may be difficult. For instance, in- fants hear a superposition of many audio sources, only some of which contain linguistic 

signals. Auditory source sep- aration is a computationally difficult problem (untractable in general). In human adults, it is influenced 

by top-down word recognition (e.g. Warren, 1970). In pre-verbal infants such sources of top-down information have themselves to 

be learned. 

The third problem is that even if non-linguistic signals are separated from linguistic ones, what to do with non-linguistic signals? In 

most instances, they should be considered as noise and discarded. In other cases, however, they can be useful for language learning. 

For instance, non-linguistic contextually relevant information in the form of visually per- ceived objects or scenes may help lexical 
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learning (D. K. Roy & Pentland, 2002) or bootstrap syntactic learning (the se- mantic bootstrapping hypothesis, see Pinker, 1984). 

Social signals (eye gaze, touch, etc), have also been taken as crucial for language learning (Tomasello, 2003; Werker & Curtin, 

2005, among others). Here again, the proper channeling of these non-linguistic cues is part of the learning problem. 

 

In brief, data selection is a critical component of a learning problem. It should not be performed by the modeler, who has inside 

information about the target language and culture, but by the model, whose task is precisely to discover it. 

Variability and ambiguity matter. Assuming data selection is solved, ambiguity and variability are prevalent properties of language, 

at all level of structure, from pho- netics up to semantics and pragmatics. Yet, many modeling approaches simplify this complexity 

by replacing real input with synthetic or idealized data. Although doing so is a use- ful practice to debug algorithms or prove 

mathematical re- sults, generalizing from the simplified to real input is risky business. 

We already discussed how clustering algorithms that dis- cover phonetic categories when run on synthetic or simpli- fied phonetic 

data yield much totally different results when run on speech signals. One level up, word segmentation al- gorithms that recover word 

boundaries when fed with (error- less) phoneme transcriptions (Goldwater, 2007) utterly fail when run on speech signals (Jansen et 

al., 2013; Ludusan et al., 2014). The problem is pervasive. Learning algorithms work because they incorporate models of the shape 

of the data to be learned. Mismatches between the models and the data will likely result in a learning failure. 

Vice versa, however, oversimplifying the input can make the learning problem harder than it is in reality. As an ex- ample, syntax 

learning models often operate from abstract transcriptions, and as a result ignore prosodic information which could prove useful for 

the purpose of syntactic anal- ysis, or lexical acquisition (e.g. Morgan & Demuth, 1996; Christophe et al., 2008; Shukla, White, & 

Aslin, 2011). 

’Presentation’ matters. The notion of ’presentation’ comes from formal learning theory (Gold, 1967). It corre- sponds to the 

particular way or order in which a parent selects his or her language inputs to the child. There are well known examples where 

presentation has extreme consequences on what can be learned or not. For instance, if there are no con- straints on the order in which 

environment presents grammat- ical sentences, then even simple classes of grammars (e.g., finite state or context free grammars, 

Gold, 1967) are un- learnable. In contrast, if the environment presents sentences according to a computable process (an apparently 

innocuous requirement), then even the most complex classes of gram- 

communicative gestures or touch: Csibra & Gergely, 2009; Seidl, Tincoff, Baker, & Cristia, 2015), as well as the com- munication 

context (e.g., availability of a perceptible refer- ence: Sachs, 1983; Trueswell et al., 2016). 

To the extent that presentation matters, it is of crucial im- portance neither to oversimplify by assuming that parents are always 

pedagogical, nor to overcomplexify by assuming that there is no difference with adult-directed observations. 

How realistic does it need to be? We discussed three ways in which the specifics of the input available to the learner matter greatly 

as to which models will succeed or fail. If one is interested in modeling infant language learning, one should therefore use inputs that 

are close to what infants get. How to proceed in practice? 

One possible strategy would be to start simple, i.e., to work with idealized inputs generated by simple formal gram- mars or 

probabilistic models and to incrementally make them more complex and closer to real data. While this approach, pursued by for mal 

learning theory has its merits, it faces the challenge that there is currently no known model of the variability of linguistic inputs, 

especially at the level of pho- netics. Similarly, there is no agreed upon way of charac- terizing what constitutes a linguistic signal 

(as opposed to a non-linguistic one), nor what constitutes noise versus useful information. The particular presentation of the target 

lan- guage and associated contextual information that result from caretaker’s communicative and pedagogic intentions has not been 

formally characterized. Even at the level of the syntax, the range of possible languages is not completely known, al- though this is 

perhaps the area where there are current propo- sitions (e.g., Jäger & Rogers, 2012). This approach there- fore runs the risk of 

locking researchers in a bubble universe where problems are mathematically tractable but are unre- lated to that faced by infants in 

the real world. 

A second strategy is more radical: use actual raw data to reconstruct infant’s sensory experience. This data-driven solution is what 

we advocate in the reverse engineering ap- proach: it forces to confront squarely the problem of data selection and removes the 

problems associated with the ide- alization of variability, ambiguity and mode of presentation. Importantly, the input data should not 

be limited to a single dataset: what we want to reverse engineer is infant’s ability to learn from any mode of presentation, in any 

possible human 

mars (recursive grammars) become learnable.6 This result 

extends to a probabilistic scenario where the input sentences are sampled according to a statistical distribution (see An- gluin, 1988). 

The importance of presentation boils down to the ques- tion of whether parents are being ’pedagogical’ or not, i.e., whether they 

present language according to a curriculum which facilitates learning7. Importantly, such curriculum may also include phonetic 

aspects (e.g. articulation param- eters: P. K. Kuhl et al., 1997), para-linguistic aspects (e.g., 

6The problem of unrestricted presentations is that, for each learner, there always exists an adversarial environment that will trick the 

learner into converging on the wrong grammar. Vice versa, as computable processes can be enumerated, and hence a stupid learner 

can test increasingly many grammars and presentations and converge. 

7Parents may not be conscious of what they are doing: they could adjust their speech according to what they think infants hear or 

understand, imitate their speech, etc. By pedagogical we refer to the result, not the intent. 

language, in any modality. One practical way to address this would be to sample from the finite although ever evolving set of 

attested languages, and split them into development set (to construct the algorithm) and test set (to validate it). It may be interesting 

to sample typologies and sociolinguistic groups in a stratified fashion to avoid overfitting the learning model to the prevalent types. 
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How far should sensory reconstruction go? Obviously, it would make no sense to reconstruct stimuli outside of the sensory range of 

infants, or with a precision superior to their discimination abilities. Hence, input simplifications can be done according to known 

properties of the sensory and atten- tional capacities of infants. If other idealizing assumptions have to be made, at the very least, 

they should be explicit, and their impact on the potential oversimplification or over- complexification of the learning problem should 

be discussed (as an example, see Sections 6 and S3.). 

Why human-machine comparisons? 

We now turn to the apparently least controversial require- ment: everybody agrees that for a modeling enterprise of any sort, a 

success criterion should be specified. However, there is little agreement on which criterion to use. 

Which success criterion? To quote a few proposals within cognitive psychology, MacWhinney (1978) proposed nine criteria, 

Berwick (1985), nine other criteria, Pinker (1987) six criteria, Yang (2002) three criteria, Frank, Gold- water, Griffiths, and 

Tenenbaum (2010) two criteria. These can be sorted into conditions about effective modeling (be- ing able to generate a prediction), 

about the input (being as realistic as possible), about the end product of learning (be- ing adult-like), about the learning trajectories, 

and about the plausibility of the computational mechanisms proposed. For formal learning theorists, success is usually defined in 

terms of learnability in the limit (Gold, 1967): a learner is said to learn a target grammar in the limit, if after a finite amount of time, 

his own grammar becomes equivalent to the target grammar. This definition may be difficult to apply because it does not specify an 

upper bound in amount of time or quantity of input required for learning (it could take a mil- lion years, see K. Johnson, 2004), nor 

does it specify an op- erational procedure for deciding when and how two gram- mars are equivalent8 . More pragmatically, 

researchers in the AI/machine learning area define success in terms of the performance of their system as measured against a gold 

stan- dard obtained from human adults. This may be an interesting procedure for testing the end-state of learning but is of little use for 

measuring learning trajectories. 

We propose to replace all these criteria by a single op- erational principle, cognitive indistinguishability defined in terms of 

cognitive tests: 

A human and a machine are cognitively indistin- guishable with respect to a given set of cognitive 

tests when they yield numerically overlapping results when ran on these tests. 

Now, this definition is not sufficient in itself: it shifts the problem of selecting a good success criterion to the problem of selecting the 

tests to be included in the cognitive bench- mark. At least, it enables to get rid of arbitrary or aesthetic criteria (I like this model 

because it seems plausible, or, it uses neurons) and forces one to define operational tests to compare models. Yet, it leaves open a 

number of questions: should the tests measure behavioral choices, reaction times, physiological responses, brain responses? Should 

they in- clude meta- or paralinguistic tests (like the ability to detect accent, emotions, etc.)? In addition, given the range of the- 

oretical options that have been formulated on language de- velopment (e.g., Tomasello, 2003; P. K. Kuhl, 2000), and disagreements 

on the essential properties of language (e.g., Hauser et al., 2002; Evans & Levinson, 2009), one would think our proposed cognitive 

benchmark will be difficult to come about. 

How to construct a cognitive benchmark? The benchmark that we propose to construct within the reverse engineering approach 

has a very specific purpose. Its aim is not to tease apart competing views of language acquisi- tion, but to target the two 

developmental puzzles presented in Section 2: how do infant bootstrap onto an adult language system? how are gradual, overlapping 

and resilient patterns of development possible? 

Answering these puzzles requires only to measure the state of linguistic knowledge present in the learner at any given point in 

development, and across the different linguis- tic structures (phonetic all the way to semantics and pragmat- ics). 

This objective can be expressed in terms of the top level of Marr’s hierarchy: the computational/informational level. It abstracts away 

from considerations about processing or neu- ral implementation. This means that under such benchmark, will be considered 

’cognitively indistinguishable’, models of the child that have little similarity to infants psychological or brain processes (e.g. Bayesian 

ideal learners, artificial neural networks), so long as they have acquired the same language- specific information. Of course, one could 

enrich the bench- mark by adding more tests that address lower levels of Marr’s hierarchy (see Supplementary Section S2. for a 

discussion of biological plausibility). 
In addition, we propose to guide the construction of the benchmark by selecting tests that 

satisfy three conditions: they should be valid (measure the construct under study as opposed to something else), re- 

8Two grammars are said to be (weakly) equivalent if they gen- erate the same utterances. In the case of context free grammars, this is an 

undecidable problem. More generally, for many learning algorithms (e.g., neural networks), it is not clear what grammar has been learned, and 

therefore the success criterion cannot be applied. 

liable (with a good signal to noise ratio), and administrable 

(to adults, children and computers alike). 

The first two conditions are standard best practices in psy- chometrics and psychophysics (e.g., Gregory, 2004). Test validity refers to 

whether a test, both theoretically and em- pirically, is sensitive to the psychological construct (state or process) it is supposed to 

measure. As a counterexample, the famous imitation game Turing (1950) tests whether ma- chines can ’think’ by measuring how 

well they can appear to be humans in an on-line text-based interaction. 

This test has dubious theoritical validity, as ’thinking’ is not a well defined cognitive construct, but rather an under- specified folk 

psychology concept, and dubious empirical validity, as it is easy to fool human observers using simplis- tic text manipulation rules 

(see ELIZA, Weizenbaum, 1966). Section 6.3 presents Turing test replacements. 

Test reliability refers to the signal to noise ratio of the measure. It can be estimated by computing the betwen- human or test-retest 

agreement, or by sampling over initial parameters for the machines. 
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Test administrability does not belong to standard psycho- metrics, but very important for comparing the performance of different 

systems or organisms. 

To test a human adult with most tasks, one simply pro- vides instructions in his or her native language. 

This is not directly to human infants nor to machines. In infants, a testing apparatus has to be constructed, i.e., a con- trolled artificial 

environment whereby responses to test stim- uli are measured using spontaneous tendencies of the par- ticipants (preference methods, 

habituation methods, etc; see Hoff, 2012, for a review).9 As for machines, the learning algorithms are not constructed to run 

linguistic tests, but to optimize a particular function which may have nothing to do with the test. Therefore, they need to be 

supplemented with particular task interfaces for each of the proposed tests in order to extract a response that would be equivalent to 

the response generated by humans.10 In all cases, administering the task should not compromise the test’s validity. Biases or 

knowledge of the desired response has to be removed from the instructions (adults), testing apparatus (infants) and inter- face 

(machines). 

In brief, we motivated the importance of a human- machine benchmark and presented principles to construct it. The construction of 

the benchmark should be viewed as part of the research program itself. It should seek a common ground between competing views of 

language acquisition, 

would have been, up to a recent period a major stumbling block for acheiving a reverse engineering approach. Indeed, for many 

years, computers were struggling with language processing. It was customary in psycholinguistic courses to mock the dismal 

performance of automatic dictation or trans- lation systems. All of this started to change with a paper by Hinton and colleagues on 

speech recognition (Hinton et al., 2012): after years in the making, neural networks were start- ing to perform better than the 

dominating technology based on probabilistic models (Gaussian Mixtures, Hidden Markov Model). A few years later, the entire 

speech processing pipeline has been replaced by neural networks trained end- to-end, with performance claimed to achieve human 

parity on a dictation task (Xiong et al., 2016, but see Saon et al., 2017). In the following, we very briefly review how such systems 

are constructed before turning on whether they could be used to inform infants language acquisition studies. 

 

The new AI spring 

One important characteristics of the new systems is they get rid of the specialized design features of their predeces- sors, and replace 

them with generic neural network architec- tures trained in large annotated corpora. Continuing with the example of speech, 

specialized audio features are replaced by spectrograms (some systems even work from raw audio in- put) and phonetic transcriptions 

and prononciation lexicons are eliminated: systems are trained to directly map speech to orthographic transcriptions, in an end-to-end 

fashion. 
 

We do not need a phoneme dictionary, nor even the concept of a ’phoneme.’ (Hannun et al., 2014). 
 

As it turn out, the basic architectures and many core ideas are not very different from those proposed in the early days of 

connectionism. For instance, Figure 2 shows the architec- ture of Deep Speech 2 (Amodei et al., 2016) a state-of-the-art speech 

recognition system composed of rather classical ele- ments popularized in the late 80’s the (the multi-layer per- ceptron, 

backpropagration training, convolutional networks, recurrent networks: Rumelhart & McClelland, 1986; Elman, 1990). 

competence progresses, and as new experimental protocols for language competence are established. 

Deep learning to the rescue? 

The combination of the first two requirements discussed above, namely, scalable computation and realistic input 
9In animals, before tests can be run, an extensive period of train- ing using reinforcement learning is often necessary, in order for the animal to 

comply with the protocol. Such procedures are not possi- ble in human infants. 
10A task interface can be viewed as a function which takes as input the internal states of the algorithm generated by the stimuli and delivers a binary 

or real valued response. Courville, 2016, for an advanced introduction). As a re- sult, neural networks have grown at a pace slightly 

faster than Moore’s law: the speech processing network in Elman and Zipser (1988) had 8000 parameters; 28 years later, Deep 

Speech 2 is twelve thousand times larger. 

Speech is not the only area where deep learning have shaken the AI landscape: object recognition (Krizhevsky, Sutskever, & Hinton, 

2012; He et al., 2015), language trans- lation (Wu et al., 2016; M. Johnson et al., 2016), and speech synthesis (Oord et al., 2016), are 

all areas where neural net- works have displaced by a large margin the previous state-of- the-art, while approaching human 

performance. This explo- sion of research is faciliated by the large distribution of pro- gramming frameworks (tensorflow, pytorch, 

dynet, mxnet, etc.), the open sourcing of datasets and state-of-the-art sys- tems which can be downloaded pre-trained and tested on 

new inputs. 

These successes are generating interest for taking ma- chine learning systems trained on large corpora as quanti- tative models of 

cognitive functions. Indeed, despite their a-priori lack of neural or biological plausibility11, the perfor- mance of these systems show 

surprising convergences with biological organisms. For instance, a deep neural network trained to recognize artefacts and natural 

kind categories 

which neural networks can be fooled by adversarial exam- ples (Nguyen, Yosinski, & Clune, 2014), and limits such as their inability 

to perform causal reasoning or display sys- tematic behavior (Lake, Ullman, Tenenbaum, & Gershman, 2016). This gives rise to an 

exciting area of research apply- ing cognitive psychology or cognitive neuroscience methods to machine learning systems 
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(Kheradpisheh, Ghodrati, Gan- jtabesh, & Masquelier, 2016; Cichy, Khosla, Pantazis, Tor- ralba, & Oliva, 2016; Linzen, Dupoux, & 

Goldberg, 2016; Tsividis, Pouncy, Xu, Tenenbaum, & Gershman, 2017; Lau, Clark, & Lappin, 2017, among others). 

The crucial question that we raise here is whether any of these algorithms could be good candidates for modeling lan- gage 

acquisition? 

 
Does machine learning model human learning? 

Statistical learning mechanisms have been claimed to be at the core of language acquisition (Saffran, 2003), so a-priori, there are 

reasons to be optimistic (Meltzoff, Kuhl, Movellan, & Sejnowski, 2009). However, there is a fundamental gap between what this term 

means in cognitive studies and how it is used in machine learning. The big difference is that in machine learning, statistical 

techniques are used as a con- venient way to construct systems, not as models of human acquisition processes. 

Interpreted cognitively, machine learning procedures would correspond to a caricature of 19th century schooling: the learner, 

initially, a kind of tabula rasa, is relentlessly fed with inputs paired with desired responses, which are annota- tions of the input 

provided by a human supervisor. The drill is repeated until the learner gets it right. 

This setup is called supervised learning, because for a given input there is only one correct answer. As an exam- ple, in speech 

recognition, the system is trained to associate a speech utterance with it’s written transcription. In natu- ral language processing  

tasks, the system is presented with sequences of words (in ortographic format) as input, and trained to associate each word to a part- 

of-speech, a semantic role tag, or a co-reference in the text, and so on. This differs in how infants learn language in two important 

ways. 

First, children do not learn their first language by being asked to associate sensory inputs with linguistic tags. Long before they are 

even exposed to linguistic tags by going to school and learn to read and write, they have acquired what amounts to a fully functional 

speech recognition and lan- guage processing system. They have done so on the basis of sensory input alone, and if there are 

supervisatory signals from the adults, these are neither unambiguous nor system- atic. This moves the problem of language learning 

in the area 

from images turn out to be good predictors of multi-unit re- sponses of neurons in the Inferior Temporal cortex of pri- mates (e.g., 

Cadieu et al., 2014; Yamins et al., 2014). There are also surprising divergences such as the strange way in 
11In fact, from their inception, neural networks have been heav- ily influenced by research in neuroscience and psychology, see the review by 

Hassabis, Kumaran, Summerfield, and Botvinick (2017). 

of unsupervised or weakly supervised machine learning: to an input, there is no unique desired output, but rather a prob- abilistic 

distribution of outcomes (with relatively unfrequent rewards or punishments)12. 

The second difference is in the sheer amount of data re- quired by artificial systems compared to infants. For in- stance, the Deep 

Speech 2 system described above is trained with over 10000 hours of transcribed speech (plus a few bil- lion words worth of text to 

provide top-down language statis- tics). In comparison, a four-year-old child, who admittedly has functional speech recognition 

abilities, is being spoken to for a total amount varying between 700h and 4000h (cor- responding to 8 and 44M words, respectively), 

depending on the language community (for estimates, see Supplementary Section S1.). This means that Deep Speech 2 requires 

around 14 times more speech, and 240 times more words than what a four-year old Mayan child get. A recent time allocation study  

in the Tsimane community (Cristia et al., 2017) shows that the amount of child directed input may even be lower than the Maya yet 

by a factor of 3 (less than one minute of speech per waking hour). This shows that the human infant is equipped with a learning  

algorithm which enables him or her to learn language with very scarse data. 
 

Summing up. 

Machine learning has made progress to the point that ’cog- nitive services’ (speech recognition, automatic translation, object and face 

recognition, etc.) are incorporated in every- day life applications. This means that one of the major road block for the reverse 

engineering approach, i.e. the feasibility of building language processing systems that can deal with realistic input at scale is now 

lifted. Instead of being locked with simplified data or toy problems, for the fist time, it be- comes possible to address the 

bootstrapping problem in its full complexity, and derive quantitative developmental pre- dictions along the way. 

Still, there are challenges ahead; current machine learn- ing systems fail to provide models of infant acquisition, not because they 

discard or simplify the input, but because they use too much of it, both in sheer quantity and in adding ex- tra inputs that the infant 

could not possibly get (linguistic labels). What needs to be done, therefore is to adapt some of the existing algorithms or construct 

new ones, so that they can learn with as few data as infants do. How far are we? 
 

5 The road ahead 

We now turn to the feasibility of the reverse engineering approach as applied to early language development. To do 

grammar of the language present in the environ- ment. 

 
 

This may seem reasonable, but it essentially puts us in the open loop situation described in Figure 3), where the envi- ronment 

delivers a fixed curriculum of inputs (utterances and their sensory contexts) and the learner recovers the grammar that generated the 

utterances. In this situation, the output of the child is not modeled, and the environment does not modify its inputs according to her 

behavior or inferred inter- nal states. This input-driven idealization may overestimate the difficulty of the task compared to a more 
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realistic close- loop scenario. We think however, that it is useful to study the input-driven scenario in its own sake, as it gives an esti- 

mate of what can be learned in the worse case scenario where parents have other priorities than optimizing their children’s language 

learning. 

We examine how this simplifying assumption can be re- laxed in Supplementary Section S3. 

Within this scenario, we claim that recent advances in AI and big data now make the reverse engineering roadmap ac- tionnable. 

We discuss current avenues of research and the challenges that need to be met. Following our three re- quirements, we review, in turn, 

the feasibility of constructing systems that can learn without expert labels, the collection of large realistic dataset, and the 

establishment of human- machine benchmarks, and illustrate it with a selection of re- cent work. 

so, we limit ourselves to the following simplifying assump- 

tion: The total input available to a particular child provides enough information to acquire the 
2This raises the issue about what is the internal reward for the infant which pushes him or her to acquire language. A drive for learning statistical 

patterns? A drive to interact with others in his or her group? 

6.1 Unsupervised / weakly supervised algorithms 

Bringing machine learning to bear to language develop- ment requires to construct systems that discover linguistic structure with 

little or no expert supervision. This is obvi- ously more difficult than learning to associate inputs to lin- guistic labels. Here, the 

learner has to discover its own la- bels given the input. This class of machine learning prob- lems is unfortunately less well studied 

and understood than supervised learning, but is an expanding field of research in machine learning. Two main, non exclusive, ideas 

are being explored to address this challenge. 

Inductive biases. The first idea is to build into the learner prior knowledge about the underlying nature of the data, so that 

generalization can be made with few or noisy datapoints. With strong prior knowledge, some logically im- possible learning 

problems become easily solvable.13 Some models of the acquisition of syntax mentioned in Section 

3.1 favor very strong priors, where the only thing to learn (besides the meaning of words) is a small number of syn- tactic binary 

parameters. The learning problem becomes so constrained that a single sentence (called a trigger) may be sufficient to decide a 

parameter’s value (Gibson & Wexler, 1994; Sakas & Fodor, 2012). The notion of inductive biases can be formulated elegantly using 

Bayesian graphical models (J. Pearl, 1997; Koller & Friedman, 2009). In these models, prior knowledge is specified as probability 

distributions over the model’s parameters, which are updated for each new in- put (see Gershman, Horvitz, & Tenenbaum, 2015 for a 

gen- eral presentation). 

For the purpose of illustration, let us revisit the discovery phonetic categories from continuous speech. We have men- tionned 

previously that generic clustering algorithms fail to learn phonemes, because of a mismatch between what clus- tering algorithms 

expect (relatively well delimited clusters) and what the data consists in (a complicated gesture unfold- ing in time). Lee and Glass 

(2012) proposed a Bayesian graphical model, where phonemes are defined as sequences of three acoustic states (schematically, a 

state for the begin- ning, the central part and the end of the phoneme). Each state is modeled as a mixture of 8 Gaussians in the space of 

acous- tic parameters (MFCCs, a representation derived from spec- trograms). Phoneme durations are also controlled through a 

binary boundary variable (modelled with a poisson distribu- tion), and the number of phonemes is specified by a Dirichlet prior, which 

expects the distribution of phonemes to follow a power law (a few phonemes are used often, many phonemes are used rarely). Far 

from being a general purpose cluster- ing algorithm, the algorihm of Lee & Glass uses language- universal information about the 

phonemes, (their shape, their duration, their frequency) to specify a model that will be inductively biased to discover this kind of 

structure in the data. Bayesian probabilistic models are also used in nat- ural language processing to infer syntactic structures from 

raw data without supervision (Liang, Jordan, & Klein, 2011; Kwiatkowski et al., 2012). Some of these models have been recently 

used on child directed input (CHILDES transcripts) to account for developmental results (Abend, Kwiatkowski, Smith, Goldwater, & 

Steedman, 2017). 

The challenge with these types of models is that the opti- mization of the parameters is very computationally intensive, which 

becomes prohibitive for large models and/or large datasets. For instance, the Lee & Glass model has only been applied to a relatively 

small corpus of read speech (TIMIT), and the Abend et al. (2017) model on textual input. Current research is devoted to develop 

efficient approximations of these algorithms to deploy them in more naturalistic datasets (see for instance Ondel, Burget, & Č ernocký, 
2016 for a scal- able reimplementation of Lee & Glass). 

Synergies. Here, the idea is that the different com- ponents of language being interdependant, it may help to jointly learn these 

components rather than to learn them sep- arately. This is actually turning the bootstrapping problem on its head: instead of being a 

liability, the codependan- cies between linguistic components become an asset. Of course, it is an empirical issue as to whether joint 

learning between any two language components is always more suc- cessful than separate learning. The existence of synergies has 

been documented using Bayesian models between phonemes and words inventories (Feldman, Myers, White, Griffiths, & Morgan, 

2011), syllables and words segmentation (M. John- son, 2008), referential intentions and word meanings (Frank, Goodman, & 

Tenenbaum, 2009). 

The existence of synergies can be leveraged in models other than Bayesian ones, including deep learning or more al- gorithmic 

speech engineering systems. For instance, return- ing to the issue of phonetic learning, several lines of research indicate that words 
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could help the discovery of subword units (Swingley, 2009; Thiessen, 2007)), and that even an imperfect, automatically discovered 

proto-lexicon can help (Martin, Peperkamp, & Dupoux, 2013; Fourtassi & Dupoux, 2014). The model described in Figure 5 

implements this idea. It consists in a word discovery system which extracts similar segments of speech across a large corpus. The dis- 

covered segments constitute a proto-lexicon of acoustic word forms (Jansen et al., 2013), which are then used to train a neural network 

in a discriminative fashion. The resulting out- put of the network is a representation of speech sound which is much more invariant to 

a change in talker than the origi- nal spectral representation on which the system started with (Thiollière, Dunbar, Synnaeve, 

Versteegh, & Dupoux, 2015). In a similar spirit, Harwath, Torralba, and Glass (2016) and 

13One good illustration is the following: can you tell the colors of 1000 balls in an urn by just selecting one ball? The task is impos- sible without 

any prior knowledge about the distribution of colors in the urn, but very easy if you know that all the balls have the same color. 

 
Harwath and Glass (2017) showed that by training a neu- ral network to associate an image with a speech input cor- responding to a 

short description of this image, the network develops phone-like and word-like intermediate representa- tions for speech. 

In brief, even though unsupervised/weakly supervised learning is difficult, there is a growing interest within ma- chine learning for 

the study of such algorithms, as shown by special sessions on this topic in machine learning confer- ences, and the organization of 

challenges involving laborato- ries in cognitive science and speech technology communities (e.g. the zero resource speech challenge, 

Versteegh et al., 2015; Dunbar et al., 2017). 

 
Large scale data collection in the wild 

A large number of datasets across languages have been collected and organized into repositories that have proved immensely useful 

to the research community. One prominent example of this is the CHILDES repository (MacWhinney, 2000), which has enabled 

more than 5000 research papers (according to a google scholar search as of 2016). These datasets, however, contain only relatively 

sparse datapoints (a few hours per infants). Perhaps the most ambitious large scale and dense data collection effort to date is the 

Spee- chome project (D. Roy, 2009), where video and audio equip- ment was installed in each room of an apartment, recording 3 

years’ worth of data around one infant. This pioneering work illustrates several key technological, analysis and ethical is- sues that 

arise in ’ecological’ data collection. 

 
Regarding technological issues, the falling costs in dig- ital sensors and data storage make it feasible to duplicate Speechome-like 

projects across many languages. More chal- lenging is the fact that to be usable for modeling, the captured should enable the 

reconstruction of infant’s sensory experi- ence from a first person point of view. Already, relatively in- expensive out-of-the box 

wearable technology can go some way in that direction. Miniaturized recorders (see for in- stance the LENA system, Xu et al., 2008) 

enable record- ing the infant’s sound environment for a full day at a time, even outside home, and will become more and more usable 

as microphone array and advanced signal processing enable source reconstruction even in noisy environment. Proximity and 

accelerometor sensors can be used to categorize activ- ities (Sangwan, Hansen, Irvin, Crutchfield, & Greenwood, 2015); ’life 

logging’ wearable devices capture images every few seconds and help to reconstruct the context of speech interactions (Casillas, 

2016). Head-mounted cameras can help to reconstruct infant’s field of view (L. B. Smith, Yu, Yoshida, & Fausey, 2015). Upcoming 

progress in the minia- turization of 3D sensors would enable to go further in the reconstruction of infant’s visual experience. 

Regarding analysis issues, the challenge it to supple- ment raw data with reliable linguistic/high levelannotations. 

Manual annotations are too costly to scale up to large and dense datasets. In the Speechome corpus, more than 3000 hours of speech 

have been transcribed, wich represents only a fraction of the total 140000 hours of audio recordings (B. C. Roy, Frank, DeCamp, 

Miller, & Roy, 2015). The re- cent breakthroughs in machine learning discussed in Section 5 (speech recognition: Amodei et al., 

2016; object recog- nition: Girshick, Donahue, Darrell, & Malik, 2016; action recognition: Rahmani, Mian, & Shah, 2016; emotion 

recog- nition: Kahou et al., 2015) will enable the semi-automatic annotations of large amounts of data. 

As for ethical issues, the main challenge is to find a point of equilibrium between the requirement of sharability and open scientific 

data, and the need of protecting the privacy of the familie’s personal data.  Up to now,  the response   of the scientific community   

has been dichotomous: either make everything public (as in the open access repositories like CHILDES, MacWhinney, 2000), or 

completely close off the corpora to anybody outside the institution that has recorded the data (as in the Riken corpus, Mazuka, 

Igarashi, & Nishikawa, 2006, or the Speechome corpus D. Roy, 2009). Neither solutions are acceptable. 

Alternative strategies are being considered by the re- search community. The  Homebank  repository  con-  tains  raw  and 

transcribed audio, with a restricted case by case access to researchers (VanDam et al., 2016, http://homebank.talkbank.org). 

Databrary has a sim- ilarly organized system for the secure storage of large sets of video recordings of developemental data (Gilmore 

& Adolph, 2017, https://nyu.databrary.org). Progress in cryptographic techniques would make it possible to envi- sion preserving 

privacy while enabling more open exploita- tion of the data. For instance, the raw data could be locked on secure servers, thereby 

remaining accessible and revok- able by the infants’ families. Researchers’ access would be restricted to anonymized meta- data or 

aggregate results ex- tracted by automatic annotation algorithms. The specifics of such a new type of linguistic data repository would 

have to be worked out before dense speech and video home recordings can become a mainstream tool for infant research. 

In brief, large scale data collection of infant data is within reach and is under in a number of research projects (see www.darcle.org), 

although it’s exploitation in an open source format requires specific developments in privacy- preserving storage and computing 
infrastructures. 



 

 

 
 
 

Cognitive benchmarking of language acquisition 

Our final requirement, the construction of a cognitive benchmark for language processing, can draw from work in linguistics and 

psycholinguistics. 

On can indeed find relatively easy-to-administer, valid and reliable tests of the main components of linguistic compe- tence in 

perception/comprehension (see Table 3). These tests are easy to administer because they are conceptually sim- ple and can be 

administered to naive participants; most of them are of two kinds: goodness judgments (say whether a sequence of sound, a sentence, 

or a piece of discourse, is ’ac- ceptable’, or ’weird’) and matching judgments (say whether two words mean the same thing or 

whether an utterance is true of a given situation, which can be described in language, picture or other means). As for validity, 

(psycho)linguistic tests often use a minimal set design where one linguistic con- struct is manipulated while every other variable is 

kept con- stant (for instance: ’the dog eats the cat’ and ’the eats dog the cat’ contain the same words, but one sequence is syntac- 

tically correct, the other not). Regarding test reliability, as it turns out, many linguistic tests are quite reliable, as 97% of the results 

of a grammaticality judgment from textbooks are replicable using on-line experiments (Sprouse, Schütze, & Almeida, 2013)14. 

Given the simplicity of these tasks, it is relatively straight- forward to apply them to machines. Indeed, matching judg- ments between 

stimulus A and stimulus B can be derived by extracting from the machine the representations triggered by stimulus A and B, and 

compute a similarity score between these two representations. Goodness judgments are perhaps more tricky; they can easily be done 

by generative algorithms that assign a probability score, a reconstruction error, or a prediction error to individual stimuli. As seen in 

Table 3, some of these tests are already being used quite standardly in the evaluation of unsupervised learning systems, in partic- ular, 

in the evaluation of phonetic and semantic levels while for others they are less widespread.15 
semantics, prag- matics 

intermodal preferential looking (16-month-olds: Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987), picture-word matching (11-month-olds: 

Thomas, Campos, Shucard, Ramsay, & Shucard, 1981) visual question answering (Antol et al., 2015) 

 
into place, it is already possible to test specific predictions using existing techniques. One can use the patterns of er- rors made by 

computational models when run on infant in- put data to generate new predictions. The reasoning is that these errors should not be 

viewed as ’bugs’, but rather signa- tures of intrinsic computational difficulties that may also be faced by infants. For instance, even 

very good word discov- ery algorithms make systematic segmentation errors: under- segmentations for frequent pairs of words (like 

"readit" in- stead of "read"+"it") or over-segmentations ("butter"+"fly" instead of "butterfly") (see Peters, 1983). 

Ngon et al. (2013) showed that it is possible to use  the preferential listening paradigm in eleven month  infants to probe for  

signature mis-segmentations. Deriving pre- dictions from a very simple model of word discovery (an ngram model) run on a 

CHILDES corpus, she constructed a set of otherwise matched frequent versus unfrequent mis- segmentations. Eleven month olds 

preferred to listen the frequent mis-segmentations, and did not distinguish them from real words of the same frequency. Larsen, 

Cristia, and Dupoux (2017) found that it was possible to compare the outcome of different segmentation algorithms in measuring 

their ability to predict vocabulary acquisition as measured by 

parental report. 

In brief, while a cognitive benchmark can be established, and it is already possible to test in infants some predictions of 

computational models, large scale model comparison will require progress in developmental experimental methods. 

 
Conclusions 

During their first years of life, infants learn a vast array of cognitive competences at an amazing speed; studyingthis development is a 

major scientific challenge for cognitive sci- ence in that it requires the cooperation of a wide variety of approaches and methods. 

Here, we proposed to add to the existing arsenal of experimental and theoretical methods the reverse engineering approach, which 

consists in building an effective system that mimics infant’s achievements. The idea of constructing an effective system that mimics 

an object in order to gain more knowledge about that object is of course avery general one, which can be applied beyond language (for 

instance, in the modeling of the acquisition of naive physics or naive psychology) and even beyond development. 

We have defined three methodological requirements for this combined approach to work: constructing a computa- 
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tional system at scale (which implies ’de-supervising’ ma- chine learning systems to turn them into models of infant learning), using 

realistic data as input (which implies setting up sharable and privately safe repositories of dense recon- structions of the sensory 

experience of many infants), and assessing success by running tests derived from linguistics on both humans and machines (which 

implies setting up bench- marks of cognitive and linguistic tests). We’ve showed that even before these challenges are all met, such 

an approach can help challenging verbal theories, help characterize the learning consequences of different kinds of inputs available to 

infant across cultures, and suggesting new empirical tests. 

Before closing, let us note that the reverse engineering approach we propose does not endorse a particular model, theory or view of 

language acquisition. For instance, it does not take a position on the rationalist versus empiricist debate (e.g., Chomsky, 1965, vs. 

Harman, 1967). Our proposal is more of a methodological one: it specifies what needs to be done such that the machine learning 

tools can be used to ad- dress scientific questions that are relevant for such a debate. It strives at constructing at least one effective 

model that can learn language. Any such model will both have an initial ar- chitecture (nature), and feed on real data (nurture). It is 

only through the comparison of several such models that it will be possible to assess the minimal amount of information that the 

initial architecture has to have, in order to perform well. Such a comparison would give a quantitative estimate of the number of bits 

required in the genome to construct this archi- tecture, and therefore the relative weight of these two sources of information. In other 

words, our roadmap does not start off with a given position on the rationalist/empiricist debate, rather, a position in this debate will 

be an outcome of this enterprise. 
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Appendix: Supplementary Materials S1. Estimate of input to child 

In this section, we describe the way in which we estimated the amount and variability of speech input to infants. We are mainly 

interested in the number of hours and number of words, since these are two common metrics used in automat- ical speech recognition 

and natural language processing. We therefore use these metrics when they were available in the original data, and estimate them 

otherwise. 

Table S2 lists the sample of four studies that we have in- cluded in our survey, which incorporate large variations in languages and 

cultures. Hart and Risley (1995, H&R) stud- ied English speaking infants splitted into three groups ac- cording to the Socio- 

Economic Status (SES) of the familly. In our analysis, we only include the two extreme groups (N=13 and 6, respectively). 

Shneidman and Goldin-Meadow (2012, S&G) studied two groups, one rural Mayan speaking community (N=6), one English 

speaking urban community in the USA (N=6). Weisleder and Fernald (2013, W&F) studied one group of low SES Spanish speaking 

familly in the USA (N=29). Finally, van de Weijer (2002, VdW) ex- tensively measured one Dutch speaking child in the Nether- 

lands. 

One methodological problem is that the four studies re- ported different kinds of metrics (H&R: number of words and utterances, 

S&G: number of utterances, W&F: number of words, and VdW: number of hours, words and utterances). In order to compare them, 

one has therefore to estimate how to convert one metric into another, which requires possibly incorred assumptions about the 

conversion parameters. They should therefore be taken with a large grain of salt, and are subject to revision when more precise data 

comes along. 

Table S1 lists the results and indicate the value of the con- version factor that we used. To compute the total number of hours per year, 

we used a waking time estimate of 9h for all of the studies except VdW which directly estimated speaking time per day. To convert 

number for words into hours, we used an estimate of word duration of 400ms. This is compat- ible with the numbers reported by 

VdW. To convert between number of utterances and number of words, we used an SES- dependant estimate of Mean Utterance Length 

of 4.43 for high SES and 3.47 for low SES (from H&R). Finally, to es- timate the total amount of speech heard by infants, we used a 

proportion of Child Directed Input of 64% for high SES (for S&G) and of 62% for low SES (from W&F). To see an updated version 

of this analysis including a new population of forager-farmers, see (Cristia et al., 2017). 

 

This makes a priori claims of biological plausibilitydifficult to make. 

Still, biological plausibility can place some theoretical bounds on system complexity at the initial state. Indeed, the initial state is 

constructed on the basis of the human genome plus prenatal interactions with the environment. This al- lows to rule out, for instance, 

a 100% nativist acquisition model that would pre-compile a state-of-the-art language un- derstanding systems for all of the existing 

6000 or more lan- guages on the planet, plus a mechanism for selecting the most probable one given the input.16 

Apart from this rather extreme case, biological plausibil- ity may not affect much of the reverse engineering approach 
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16The reason such system would not be biologically realizable is that the parameters of a state-of-the-art phoneme recognition system for a single 

of these languages already require 10 times more mem- ory storage than what is available in the fraction of the genome that differentiate humans 

from apes. A DNN-based phone recognizer has typically more than 200M parameters, which barring ways to compress the information, takes 

400Mbytes. The human-specific genome is 5% of 3.2Gbase, which boils down to only 40Mbyteuntil more is known about the 

computational capacity of the brain. Yet, it is compatible with our approach, since as soon as diagnostic tests of 

language computation in the brain are available, they could be added to the cognitive benchmark, as defined in Section 

6.3 (see also Frank, 201417). 

 
S3. Can reverse engineering address the fully interactive learning scenario? 

In this section, we revisit the simplifying assumptions of the input-driven scenario endorsed in Section 6 and dis- played in  

Figure 3a. This scenario does not take into consid- eration the child’s output, nor the possible feedback loops from the parents based 

on this output. Many researchers would see this as a major, if not fatal, limitation of the ap- proach. In real learning situations, 

infants are also agents, and the environment reacts to their outputs creating feedback loops (Bruner, 1975, 1983; MacWhinney, 1987; 

Snow, 1972; Tamis-LeMonda & Rodriguez, 2008). 

The most general description of the learning situation is therefore as in Figure S1. Here, the child is able to generate observable 

actions (some linguistic, some not) that will mod- ify the internal state of the environment (through the monitor- ing function). The 

environment is able to generate the input to the child as a function of his internal state. In this most general form, the learning 

situation consists therefore in two coupled dynamic systems.18 

Could such a complex situation be addressed within the reverse engineering approach? We would like to answer with a cautious 

yes, to the extent that it is possible to adhere to the same three requirements, i.e., realistic data (as opposed to simplified ones), 

explicit criteria of success (based on cogni- tive indistinguishability), and scalable modeling (as opposed to verbal theories or toy 

models). While none of these re- quirements seem out of reach, we would like to pinpoint some of the difficulties, which are the 

source of our caution. Regarding the data, the interactive scenario would require accessing the full (linguistic and non linguistic) 

output of 

the infant, not only her input. While this is not intrinsically harder to collect than the input, and is already been done in many corpora 

for older children, the issue of what to cat- egorize as linguistic and non linguistic output and how to annotate it is not completely 

trivial. 

Regarding computational modeling, instead of focusing on only one component (the learner) of one agent (the child), in the full 

interactive framework, one has to model two agents (the child and the adult) for a total of four components (the learner, the infant 

generator, the caregiver monitor, and the caregiver generator). Furthermore, the internal states of each agent has to be split into 

linguistic states (grammars) and non-linguistic (cognitive) states to represent the commu- nicative aspects of the interaction (e.g., 

communicative in- tent, emotional/reinforcement signals). This, in turn, causes the split of each processing component into linguistic 

and cognitive subcomponents. 

Although this is clearly a difficult endeavor, many of the individual ingredients needed for constructing such a system are already 

available in the following research areas. First, within speech technology, there are available components to build a language 

generator, as well as the perception and comprehension components in the adult caregiver. Second, within linguistics, 

psycholinguistics and neuroscience, there are interesting theoretical models of the learning of speech production and articulation in 

young children (Tomasello, 2003; W. Johnson & Reimers, 2010; Guenther & Vladu- sich, 2012). Third, within machine learning, 

great progress has been made recently on reinforcement learning, a power- ful class of learning algorithms which assume that besides 

raw sensory data, the environment only provides sporadic positive or negative feedback (Sutton & Barto, 1998). This could be 

adapted to model the effect of the feedback loops on the learning components of the caregiver and the infant. Fourth, developmental 

robotics studies have developed the notion of intrinsic motivation, where the agent actively seek new information by being reinforced 

by its own learning rate (Oudeyer, Kaplan, & Hafner, 2007). This notion could be used to model the dynamics of learning in the 

child, and the adaptive effects of the caregiver-child feedback loops. 

The most difficult part of this enterprise would perhaps concern the evaluation of the models. Indeed, each of these new 

components and subcomponents would have to be eval- uated on their own in the same spirit as before, i.e., by run- ning them on 

scalable data and testing them using human- validated tasks. For instance, the child language generator should be tested by 

comparing its output to age appropriate children’s outputs, which requires the development of appro- priate metrics (sentence length, 

complexity, etc) or human 

 
udying children and adults in ex- perimentally controlled interactive loops (e.g., N. A. Smith & Trainor, 2008; Goldstein, 2008). In 
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addition, because a complex system is more than the sum of its parts, individ- ual component validation would not sufficient, and the 

entire system would have to be evaluated.19 

Fully specifying the methodological requirements for the reverse engineering of the interactive scenario would be a project of its 

own. It is not clear at present how much of the complications introduced by this scenario are necessary, at least to understand the 

first steps of language bootstrapping. To the extent that there are cultures where the direct input to the child is severely limited and/or 

the interactive character of that input circumscribed, it would seem that a fair amount of bootstrap can take place outside of 

interactive feedback loops. This is of course entirely an empirical issue, one that the reverse engineering approach should help to 

clarify. 
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