ANTIOXIDANT PROPERTY AND GC MS PROFILING OF THE METHANOLIC LEAF EXTRACT OF PLUMBAGO ZEYLANICA

HEMAVATHY EKAMBARAM, K. MANJUNATH, APOORVA UDAYASHANKARA
DEPARTMENT OF MICROBIOLOGY AND BIOTECHNOLOGY, BANGALORE UNIVERSITY, BANGALORE, INDIA
Corresponding author: ushamanjunath58@rediffmail.com

ABSTRACT
Plants have been a natural source with the ability to cure many inflammatory diseases and disorders. The roots of the Plumbago spp have been reported for a number of therapeutic properties and have been extensively investigated for its phyto compounds. The present study was used to investigate the total phenolics, free radical scavenging activity and the GC-MS profiling of the methanolic leaf extract of Plumbago zeylanica. The total phenolics was estimated to be 1219±2.41 gallic acid equivalent (GAE) g⁻¹. The free radical scavenging activity was equivalent to that of the standard ascorbic acid indicating a potential anti-oxidant property. The GC-MS analysis showed a number of compounds belonging to sterols, terpenes, alkanes and aromatic hydrocarbons many of which have been reported for potential bioactive property.

INTRODUCTION
The production of free radicals is a normal physiological process that results from various metabolic reactions carried out by the cells in the body. Their presence can have an effect on the cells affecting the nucleic acids, proteins, carbohydrates and lipids influencing its biological functions [1-3]. With the ability to affect the homeostasis of the body they are responsible for inducing oxidative stress ultimately leading to a number of inflammatory diseases and accelerates the process of aging [4-8]. The body’s own natural mechanism of eliminating the free radicals is through the production of enzymes (Superoxide dismutase, catalase and glutathione enzymes) and antioxidant substances (Glutathione, uric acid and Melatonin) in the cells [9-18]. Antioxidants are obtained through dietary sources such as Beta carotene (Vitamin A), Ascorbic acid (Vitamin C), tocopherols and tocotrienols (Vitamin E)[19-23]. Very often the dependence on this natural mechanism is affected by factors such as the age and lifestyle induced stress [1, 24-25].

Synthetic antioxidants were once the preferred alternatives and added as supplement in various food sources. Owing to its benefits they also had its applications in other industries such as cosmetics and therapeutics. Commercially used synthetic anti-oxidants are phenolic derivatives such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). However studies have shown that these synthetic anti-oxidants have harmful effects on the human health [26].

A new area of interest is the search of antioxidants from natural sources which are nontoxic and abundantly available. Numerous investigations were done in search of anti-oxidants in fruits, vegetables and plants with medicinal properties [27-29]. Green tea and black teas are currently the most preferred for its health benefits and studies have shown high anti-oxidant properties owing to its presence of phenolic compounds [30]. Indian Medicinal plants that have been investigated for its anti-oxidant properties are Aloevera (Indian aloe), Azadirachtaindica (Neem), Bacopamonniera (Brahmi), Curcuma longa (Turmeric), Emblica officinalis (Indian gooseberry), Murrayakoenigii (Curry leaf), Ocimum sanctum (Holy basil) and Withaniasomifera (Winter cherry) [31].

Plumbagospp commonly known as the Leadwort is a perennial flowering plant belonging to the family Plumbaginaceae. Commonly seen in India, it is the most grown ornamental plant for its aesthetic form. All the species of the plant namely P.auriculata, P.europaea, P.zeylanica and P. rosea have been reported in traditional use for its medicinal properties[32-38]. The present study was used to investigate the phyto constituents in the leaves of P.zeylanica and its potential as an antioxidant. This part of the plant is less explored as more studies have been done on the root part of the plant reported for its traditional medicinal properties.
MATERIAL AND METHODS

MATERIALS
All the chemicals and reagents were of analytical grade. 2,2- diphenyl- 1- picrylhydrazyl (DPPH) was procured from SISCO Research Laboratories, Maharashtra (India), Gallic acid were obtained from Hi Media Laboratories Pvt. Ltd, Mumbai, India. Petroleum ether, Chloroform, sodium carbonate, Ascorbic acid were obtained from SD Fine Chemicals Limited, Mumbai (India), Methanol from Spectrum Chemical Private Limited, Cochin (India), Folin–Ciocalteu reagent was from MERCK Specialties Private Limited, Mumbai (India).

Collection of Plant Material
The leaves of P. zeylanica was collected from the garden of Institute of Wood Science & Technology, Bangalore, Karnataka (India). The authentication of the plant was done at Department of Botany, Maharani Lakshmi Ammanni College for Women and at Department of Microbiology & Biotechnology, Bangalore University, Jnana Bharathi Campus, and Bengaluru.

Preparation of plant extract
The leaves thoroughly washed with tap water followed by distilled water were left for shade drying and later pulverized to a fine powder. It was subjected to sequential soxhlation with the solvents in the order of petroleum ether, chloroform and Methanol for 16hrs each. The methanolic extract which was evaporated to dryness in a water bath at 40°C was later used for the study [39].

Total Phenolic content (TPC)
TPC of methanolic extract of P. zeylanica was analyzed by Folin-Ciocalteu method [40]. In a Microtitre well 50 μl of different concentrations of the extract (10-50 μg mL⁻¹) was taken with equal quantities of FC reagent previously diluted with 1:1 with distilled water. The mixture was allowed to stand for 5 mins and then mixed with 100μl of Sodium carbonate solution (2%). After 10mins the absorbance was measured at 730nm. TPC of the extract was determined using standard curve and expressed as μmgallic acid equivalent (GAE)/mg extract using the formula: \[T = \frac{C \times V}{M} \]. Where \(T \) is the TPCs in μg/mg of the extracts as GAE, \(C \) is the concentration of gallic acid in μg/mL, \(V \) is the volume of the extract in mL, and \(M \) is the weight in mg of the extract. All the assays were carried out in triplicates.

Antioxidant activity

DPPH Radical Scavenging Activity
The free radical scavenging activity of the extract was determined using DPPH. [40] 0.006% of DPPH solution was prepared in 95% methanol. Different concentrations of the extract was treated with equal volumes of freshly prepared DPPH and left in dark for 30mins. The absorbance was read at 517nm in UV spectrophotometer. All the tests were carried out in duplicates, Ascorbic acid was used as standard and 95% methanol was used as blank. Percent scavenging of the DPPH free radical was measured using the formula: \[\text{DPPH scavenging effect} \% = \frac{A_0 - A_1}{A_0} \times 100 \]. where, \(A_0 \) was the absorbance of the control and \(A_1 \) was the absorbance in the presence of the sample (methanolic leaf extract of P. zeylanica)

GAS CHROMATOGRAPHY–MASS SPECTROMETRY (GC MS) ANALYSIS OF P. ZEYLANICA METHANOLIC LEAF EXTRACT
The Clarus 680 GC was used in the analysis employed a fused silica column, packed with Elite-5MS (5% biphenyl 95% dimethylpolysiloxane, 30 m × 0.25 mm ID × 250μm df). 1μl of the sample was used for injection and the components were separated using Helium as carrier gas at a constant flow of 1 ml/min. The spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST (2008) library.

STATISTICAL ANALYSIS
All the experiments were carried out in duplicates and the results were expressed as mean ± standard error of the mean. The data were statistically analyzed using Microsoft Office Excel 2007.

RESULT
Plants have been a natural source for a number of phytocompounds with the potential to treat diseases and disorders in humans. Their therapeutic properties are well documented since the ancient medicinal practice and the knowledge on their potentiality now continues to interest researchers to explore the phytocompounds to be used a potential drug considered to be safe with no side effects.

In the present study, an attempt was made to estimate the total phenolic, anti-oxidant property and to analyze the phyto compounds by GC MS analysis. The total phenolic as estimated by FC method was found to be 1219±2.41
gallic acid equivalent (GAE) g⁻¹. The free radical scavenging activity of the extract was evaluated by its ability to inhibit the decolourization of DPPH. The present study showed the potential of the extract as an effective antioxidant as its free radical scavenging activity was equivalent to that of the standard antioxidant namely ascorbic acid. The Fig 1 shows the comparison of the DPPH assay of the methanolic extract and Ascorbic acid.

![Graph showing comparison of DPPH activity](image)

Fig 1. Comparison of the DPPH activity of Methanolic extract of *P. zeylanica* and Ascorbic acid

The GC MS analysis of the extract showed a diverse range of compounds, the predominant being the occurrence of phytosterols and terpenoids. Table 1 shows the characteristics of the phyto compounds detected in the methanolic extract of *P. zeylanica* detected by GC- MS analysis.

The Fig 2 shows the Chromatogram of the compounds detected in the GC MS analysis. The sterols and terpenes that were detected are phytosterols and terpenoids. Table 1 shows the characteristics of the phyto compounds detected in the methanolic extract of *P. zeylanica* detected by GC- MS analysis.

Alkanes of varying chain length were the next most prominent compounds detected in the analysis. Some of the compounds observed were Tetradecane, 1-chloro-; Hexadecane, 1-chloro-; 1-Octadecanesulphonyl chloride; Nonadecane, 1-chloro-; Dodecane, 1-chloro-; 4-Propionyloxytridecane; 2-Pentadecanone,6,10,14-trimethyl-; Hexatriacontane; Dotriacontane; Tritetracontane; Tetratetracontane; Heptacosane, 1-chloro-; Octacosane; Tetracosane, 11-decyl-; Heneicosane, 11-(1-ethylpropyl)-; 1-Chloroeicosane; behenyl chloride; Z-5-methyl-6-heneicosene-11-one.

Few Fatty aldehyde compounds that were detected were 7-Hexadecenal, (z)-; Hexadecanal, 2-methyl-; and fatty acids such as Hexadecanoic acid, 2-oxo-, methyl ester; Eicosanoic acid; Oleic acid,3-(octadecyloxy)propyl ester; Vinyl decanoate; 3-(Octadecyloxy)propyl ester; 2,2-dimethylpropanoic acid, oct-3-en-2-yl ester and fatty acid derivative Geranyl isovalerate were also observed.

Some of the aromatic hydrocarbons detected were 2-Piperidinone, n-[4-bromo-n-butyl]-; beta. carotene; 2(3h)-Benzofuranone, hexahydro-4,4,7a-trimethyl-; Psueduosasapogenin-5,20-dien; 7-hydroxy-3-(1,1-dimethylprop-2-enyl)coumarin; 1-Coprost-3-en-1,24-dinitrophenylhydrzone and 1-naphthaleneperpropanol, alpha.-ethyldechydrol-5-(hydroxymethyl). Ethylene oxide derivative also known as oxirane, tetradecyl- was also detected. Fig 3 shows the structure and mass spectrum of some of the compounds detected in the methanolic leaf extract of *P. zeylanica*.
Table 1 shows the characteristics of the phyto compounds detected in the methanolic extract of *P. zeylanica* detected by Gas chromatography-Mass spectrometry analysis.

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>M.W.</th>
<th>. Formula</th>
<th>REV</th>
<th>FOR</th>
<th>Retention time</th>
<th>Peak Area %</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholest-22-ene-21-ol, 3,5-dehydro-6-methoxy-, pivalate</td>
<td>498</td>
<td>C_{33}H_{54}O_{3}</td>
<td>824</td>
<td>637</td>
<td>27.413</td>
<td>16.273</td>
<td>900124-60-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>784</td>
<td>637</td>
<td>28.064</td>
<td>9.008</td>
<td></td>
</tr>
<tr>
<td>Total= 25.281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesta-8, 24-dien-3-ol, 4-methyl-, (3.beta.,4.alpha.)-</td>
<td>398</td>
<td>C_{28}H_{46}O</td>
<td>834</td>
<td>643</td>
<td>28.679</td>
<td>11.814</td>
<td>7199-92-0</td>
</tr>
<tr>
<td>1-methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cyclohexane</td>
<td>222</td>
<td>C_{15}H_{26}O</td>
<td>914</td>
<td>393</td>
<td>26.563</td>
<td>11.14</td>
<td>900144-10-6</td>
</tr>
<tr>
<td>Tetradecane, 1-chloro-</td>
<td>232</td>
<td>C_{14}H_{29}Cl</td>
<td>842</td>
<td>611</td>
<td>27.213</td>
<td>11.276</td>
<td>2425-54-9</td>
</tr>
<tr>
<td>Octadecane, 1-chloro-</td>
<td>288</td>
<td>C_{18}H_{37}Cl</td>
<td>864</td>
<td>637</td>
<td>26.853</td>
<td>7.779</td>
<td>3386-33-2</td>
</tr>
<tr>
<td>Hexatriacontane</td>
<td>506</td>
<td>C_{36}H_{74}</td>
<td>917</td>
<td>709</td>
<td>26.313</td>
<td>6.047</td>
<td>630-06-8</td>
</tr>
<tr>
<td>1-Hexyl-2-Nitrocyclohexane</td>
<td>213</td>
<td>C_{12}H_{23}O_{2}N</td>
<td>848</td>
<td>482</td>
<td>29.289</td>
<td>5.747</td>
<td>118252-04-3</td>
</tr>
<tr>
<td>Dotriacontane</td>
<td>450</td>
<td>C_{32}H_{66}</td>
<td>915</td>
<td>699</td>
<td>25.768</td>
<td>4.585</td>
<td>544-85-4</td>
</tr>
</tbody>
</table>

Fig 2. Chromatogram of the Methanolic extract of *P. zeylanica*
Table 2 showing the chemical nature and reported bioactive active property of the compounds that were detected in the methanol extract of *M. elengi*

<table>
<thead>
<tr>
<th>COMPOUND NAME</th>
<th>CHEMICAL NATURE</th>
<th>REPORTED BIOACTIVE PROPERTY</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholest-22-ene-21-ol, 3,5-dehydro-6-methoxy-, pivalate</td>
<td>Phytosterol</td>
<td>Antimicrobial activity</td>
<td>41</td>
</tr>
<tr>
<td>1-methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cyclohexane</td>
<td>Sesquiterpene alcohol</td>
<td>Antimicrobial, Anti-inflammatory, Anti hyperlipidemic</td>
<td>42</td>
</tr>
<tr>
<td>Tetradecane, 1-chloro-</td>
<td>Alkane</td>
<td>Antimicrobial activity</td>
<td>43</td>
</tr>
<tr>
<td>Octadecane, 1-chloro-</td>
<td>Alkane</td>
<td>Anti-oxidant, antibacterial</td>
<td>44</td>
</tr>
<tr>
<td>Hexatriacontane</td>
<td>Alkane</td>
<td>Anti-oxidant</td>
<td>45</td>
</tr>
<tr>
<td>1-Hexyl-2-Nitrocyclohexane</td>
<td>Aromatic hydrocarbon</td>
<td>Antimicrobial activity</td>
<td>46</td>
</tr>
<tr>
<td>Dotriacontane</td>
<td>Alkane</td>
<td>Anti-oxidant, hypercholesterolemic, Antioxidant, antispasmodic.</td>
<td>47, 48</td>
</tr>
<tr>
<td>Hexadecanoic acid, 2,3-bis[(trimethylsilyl)oxy]propyl ester</td>
<td>Fatty acid</td>
<td>Anti-inflammatory, Antioxidant, antipsychotic, hypocholesterolemic, nematicide, pesticide, anti androgenic flavor, hemolytic, 5-Alpha reductase inhibitor, potent mosquito larvicide.</td>
<td>49, 50, 51</td>
</tr>
<tr>
<td>Stigma sterol</td>
<td>Phytosterol</td>
<td>Anti-cancer, antioxidant, hypoglycemic and thyroid inhibiting properties</td>
<td>52</td>
</tr>
<tr>
<td>Ethyl iso-allocholate</td>
<td>Sterol derivative</td>
<td>Anti-cancer</td>
<td>53</td>
</tr>
<tr>
<td>30-Norlupan-28-oic acid</td>
<td>Triterpenoid</td>
<td>Anti- HIV activity</td>
<td>54</td>
</tr>
<tr>
<td>Phytol</td>
<td>Diterpene</td>
<td>Precursor for synthetic Vitamin E and K1 manufacture; activate the transcription factors PPAR-alpha involved in fatty acid metabolism, fragrance industry</td>
<td>55, 56, 57, 58</td>
</tr>
<tr>
<td>Octacosane</td>
<td>Alkane</td>
<td>Act as good phase change materials</td>
<td>59, 60</td>
</tr>
<tr>
<td>Heneicosane</td>
<td>Alkane</td>
<td>Antibacterial, Inhibit larva growth</td>
<td>61</td>
</tr>
<tr>
<td>2-Piperidinone, n-[4-bromo-n-butyl]-</td>
<td>Lactam</td>
<td>Antimicrobial activity</td>
<td>62</td>
</tr>
<tr>
<td>β-carotene</td>
<td>Terpenoid</td>
<td>Vitamin a precursor, Anti-oxidant</td>
<td>63</td>
</tr>
</tbody>
</table>

DISCUSSION

Plumbago zeylanica is well documented for its medicinal property and has been widely used in the Indian Medicinal practices. The roots of the plant is widely used and have been reported for various treatment but had to be cautiously used since it is equally poisonous and considered to be an abortifacient [64]. The pharmacological property of the plant root has been attributed to its phyto compounds such as alkaloids, glycosides, tannin, saponins, terpenoids, steroids and most importantly Plumbagin (Naphtha quinone)[65].

The present study showed that leaf extracts of *P. zeylanica* possess phyto compounds that may play a major role in therapeutics and overcome the toxicity associated with the roots of the plant. The methanolic leaf extract showed a good antioxidant potential with percentage inhibition of 80% and was almost equivalent to that of the Ascorbic used as standard.

The GC MS analysis of the extract showed a high amount of sterol compounds with Cholest-22-ene-21-ol, 3, 5-dehydro-6-methoxy-, pivalate being the most abundant as determined from the chromatogram with peak area percentage of 25.281. This compound has been earlier documented as a bioactive compound known for...
antimicrobial activity[41]. Other compounds detected were also seen to possess similar activity as shown in Table 2. In vitro antimicrobial studies of methanol leaf extracts of P. zeylanica showed both antibacterial and antifungal activity when tested against both human and agricultural pathogens [66]. The presence of a triterpenoid is very promising as it is been documented for anti HIV activity. Some sterols and sterol derivatives detected have been documented for anti-cancer activity. The high anti-oxidant activity of the extract can be attributed to the phyto compounds such as carotenes, aromatic compounds and alkenes that have been detected through the GC MS analysis. The phytols that have been detected could be a source for synthetic preparations of Vitamin E which is a potent antioxidant.

CONCLUSION
This study clearly indicates the potential of the leaves of P. zeylanica for various therapeutic purposes. With numerous compounds detected with the potential of anti oxidant, anti microbial, anti cancer and anti inflammatory activity, the leaves can be equally important like the roots of P. zeylanica for therapeutic use. They can be source for phytol extraction which has huge application in the commercial process of synthetic vitamins like Vitamin E and Vitamin K1. Investigations needs to be done on the anti HIV potential of the leaf since there is a detention of an antiviral compound 30-Norlupan-28-oic acid. This finding can be very significant to be used against the virus HIV.

ACKNOWLEDGMENTS
The authors are thankful to the Department of Microbiology & Biotechnology, Jnana Bharathi campus and Maharani Lakshmi Ammanni College for women, Bengaluru for supporting this research. The authors are also obliged to Institute of Wood Science & Technology Bangalore for having helped with the plant material P. zeylanica.

REFERENCES:
26. MiddhaSk.,Usha T., Pande V. HPLC Evaluation of Phenolic Profile, Nutritive Content, and Antioxidant Capacity of Extracts Obtained from Punica granatum Fruit Peel 2013, ID 296236. [https://doi.org/10.1155/2013/296236]
48. Usha T, Goyal AK, Narzary D, Prakash L, Wadhwa G, Babu D ; Shammugarajan D, Mehdha SK Identification of bioactive glucose-lowering compounds of methanolic extract of Hodgsonia heteroclitica fruit pulp. Frontiers In Bioscience, Landmark, 2018; 23: 875-888