A TRIPLE FIXED POINT THEOREM OF CARISTI TYPE CONTRACTION FOR MULTI VALUED MAPS IN A HAUSDORFF METRIC SPACE

G.N.V. Kishore, G. Adilakshmi, B. V. Appa Rao, CH. Ramasanyasi Rao

1Department of Engineering Mathematics, SRKR Engineering College, Bhimavaram - 534 204, Andhra Pradesh, India.
2Research Scholar, Koneru Lakshmaiah Education Foundation, Vaddeswaram - 522 502, Andhra Pradesh, India.
3Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram - 522 502, Andhra Pradesh, India.
4Department of Mathematics, M. V. R. Degree P. G. College, Gajuwaka, Visakhapatnam- 530026, Andhra Pradesh, India.

Received: 10.11.2019 Revised: 15.12.2019 Accepted: 18.01.2020

Abstract
The main aim of this paper is to obtain a unique common tripled fixed point of caristi type caristi type ontraction for multi valued mappings in a Hausdorff metric space.

Keywords: Metric space, compatible maps, tripled fixed point, Hausdorff metric.

INTRODUCTION
The concept of standard metric space is a fundamental tool in topology, functional analysis and nonlinear analysis. This structure has attracted a considerable attention from mathematicians because of the development of the fixed point theory in standard metric space. Since Banach introduced this theory in 1922([10]), it has been extended and generalized by several authors. Caristi type fixed point theorem is one of these generalizations. It is a modified ε-variation principle of Ekeland([9]). In 1976, Caristi proved the following famous fixed point theorem.

Theorem 1.1 [6] Let (X, d) be complete metric space and f : X → R be lower semi continuous function and bounded below function. A mapping T : X → X is said to be Caristi type map on X dominated by f if T satisfies d(x,Tx) ≤ f(x) − f(Tx) for each x ∈ X. Then T has a fixed point.

S.B.Nadler introduced the concept of multivalued contraction mappings in the year 1969([11]).

Definition 1.2 ([11]) Let (X, d) be a metric space. We define the Hausdorff metric on CB(X) induced by d. That is H(A, B) = max{sup d(l, B), sup d(m, A)} for all A, B ∈ CB(X), where CB(X) denotes the family of all nonempty closed and bounded subsets of X and d(l, B) = sup {d(l, b); b ∈ B}, for all l ∈ X.

Definition 1.3 ([11]) Let (X, d) be a metric space. A map T : X → CB(X) is said to be multivalued contraction if there exists 0 ≤ α < 1 such that H(T(l), T(m)) ≤ αd(l, m), for all l, m ∈ X.

Lemma 1.4 ([8]) Let X be a nonempty set and g : X → X be a mapping, then there exists a subset E ⊆ X such that g(E) = g(X) and g : E → E is one one.

Now we give the following definitions for hybrid pair of mappings.

Definition 1.5 ([7]) Let X be a non empty set, T : X × X × X → 2^X(collection of non empty subsets of X) and f : X → X.

(i) The point (l, m, n) ∈ X × X × X is called a tripled fixed point of T if

\[l \in T(l, m, n), \quad m \in T(m, l, m), \quad n \in T(n, m, n). \]

(ii) The point (l, m, n) ∈ X × X × X is called a tripled coincident point of T and f if

\[f l \in T(l, m, n), \quad f m \in T(m, l, m), \quad f n \in T(n, m, n). \]

(iii) The point (l, m, n) ∈ X × X × X is called a tripled common fixed point of T and f if

\[l = f l \in T(l, m, n), \quad m = f m \in T(m, l, m), \quad n = f n \in T(n, m, n). \]

Definition 1.6 [7] Let T : X × X × X → X be a multi valued map and f be self map on X. The hybrid pair (T, f) is called w−compatible if T(f(l, m, n)) ⊆ T(f(l, m, n)) whenever (l, m, n) is tripled coincidence point of T and f.

Lemma 1.7 [See [5]] Let α be a reflexive relation on a nonempty set M and $\phi : M → R$ a function bounded from below, then $\alpha = \phi$ and $\phi = \phi(y)$.

Throughout this paper, we assume that $\zeta : [0, \infty) → [0, \infty)$ is an upper semi continuous function.

Now we prove our main results.

RESULTS AND DISCUSSIONS
Theorem 2.1 Let (X, d) be a complete metric space and let S : X × X × X → CB(X) be a set valued mapping satisfies

\[H(S(l, m, n), S(a_1, b_1, c_1)) \leq \max \left\{ \begin{array}{l} \zeta \left(\max \{\zeta(l, a_1), \zeta(m, b_1), \zeta(n, c_1)\} \right), \\
\zeta \left(\max \{\zeta(a_1, b_1), \zeta(a_2, b_2), \zeta(a_3, b_3)\} \right) \\
\max \{\zeta(l, a_1), \zeta(m, b_1), \zeta(n, c_1)\} \\
\max \{\zeta(a_1, b_1), \zeta(a_2, b_2), \zeta(a_3, b_3)\} \end{array} \right\} \]

where $\zeta : [0, \infty) → [0, \infty)$ is a generalized contraction coefficient.
for some $a_j \in S(l, m, n), a_{j+1} \in S(m, l, m_1), a_{j+2} \in S(n, m, I)$, $\beta_j \in S(b_j, b_{j+1}), \beta_{j+1} \in S(b_{j+1}, c_{j+1}), \beta_{j+2} \in S(c_{j+1}, b_{j+2})$. Where $S: \mathbb{X} \times \mathbb{X} \times \mathbb{X}$ is lower semi continuous function and $\zeta: [0, \infty) \to [0, \infty)$ be an upper semi continuous function. Then S has a triple fixed point.

Proof: Define a relation \sim on X as follows:

$$S(l, m, n) \sim S(a_j, b_j, c_j) \iff H(S(l, m, n), S(a_j, b_j, c_j)) \leq \max \left\{ \zeta \left(\max \left(\zeta \left((l, a_j), (m, b_j), (n, c_j) \right) \right), \zeta \left(\max \left(\zeta \left((l, a_j), (m, b_j), (n, c_j) \right) \right) \right) \right\}$$

Then clearly \sim is a reflexive relation on X.

Let $l_0, m_0, n_0 \in X$ be arbitrary points in X.

Choose $l_0 \in S(m_0, n_0, m_0, m_0, n_0, m_0, n_0, l_0)$ since S is compact valued maps so there exists $l_0 \in S(m_1, m_1, m_1)$ and $m_0 \in S(l_0, m_0, l_0)$ such that $d(l_1, l_2) \leq H(S(l_0, m_0, n_0), S(l_0, m_0, n_0))$

$$\leq \max \left\{ \zeta \left(\max \left(\zeta (l_1, l_2), (m_0, m_0), (n_0, n_0) \right) \right), \zeta \left(\max \left(\zeta (l_1, l_2), (m_0, m_0), (n_0, n_0) \right) \right) \right\}$$

and

$$d(m_0, m_0) \leq H(S(m_0, l_0, m_0, n_0), S(m_1, m_1, m_1)) \leq \max \left\{ \zeta \left(\max \left(\zeta (m_0, m_0), (l_0, l_1), (m_0, m_0) \right) \right), \zeta \left(\max \left(\zeta (m_0, m_0), (l_0, l_1), (m_0, m_0) \right) \right) \right\}$$

Also

$$d(n_0, n_0) \leq H(S(m_0, n_0, m_0, n_0), S(n_0, m_0, n_0)) \leq \max \left\{ \zeta \left(\max \left(\zeta (n_0, n_0), (l_0, l_1), (n_0, n_0) \right) \right), \zeta \left(\max \left(\zeta (n_0, n_0), (l_0, l_1), (n_0, n_0) \right) \right) \right\}$$

Therefore

$$\max (d(l_1, l_2), d(m_0, m_0), d(n_0, n_0)) \leq \max \left\{ \zeta \left(\max \left(\zeta (l_1, l_2), (m_0, m_0), (n_0, n_0) \right) \right), \zeta \left(\max \left(\zeta (l_1, l_2), (m_0, m_0), (n_0, n_0) \right) \right) \right\}$$

Continuing in this way we can obtain sequences (l_k, m_k, n_k) in X such that $l_{k+1} \in S(l_k, m_k, n_k), m_{k+1} \in S(m_k, l_k, m_k)$ and $n_{k+1} \in S(n_k, m_k, l_k)$ such that

$$\max (d(l_k, l_{k+1}), d(m_k, m_{k+1}), d(n_k, n_{k+1})) \leq \max \left\{ \zeta \left(\max \left(\zeta (l_k, l_{k+1}), (m_k, m_{k+1}), (n_k, n_{k+1}) \right) \right), \zeta \left(\max \left(\zeta (l_k, l_{k+1}), (m_k, m_{k+1}), (n_k, n_{k+1}) \right) \right) \right\}$$
\[\leq \max \left\{ \zeta \left(\max \{ \zeta(l, m), \zeta(m, n) \} \right), \right. \\
\left. \zeta \left(\max \{ \zeta(a, b), \zeta(a, b), \zeta(a, b) \} \right) \right\} \\
\left\{ \max \{ \zeta(l, m), \zeta(m, n) \} \right\}\right].
\]

Letting \(k \to \infty \) we have

\[H(S(l, m, n), S(l, m, n)) \leq \max \left\{ \zeta \left(\max \{ \zeta(l, m), \zeta(m, n) \} \right), \right. \\
\left. \zeta \left(\max \{ \zeta(a, b), \zeta(a, b), \zeta(a, b) \} \right) \right\} \\
\left\{ \max \{ \zeta(l, m), \zeta(m, n) \} \right\}\right] = 0.
\]

Therefore \(H(S(l, m, n), S(l, m, n)) = 0 \).

Similarly we can prove that

\[H(S(m, l, m), S(m, l, m)) = 0 \]

and

\[H(S(n, m, l), S(n, m, l)) = 0.\]

So as \(k \to \infty \) we have

\[d(k+1, S(l, m, n)) = \in\{d(k+1, a) : a \in S(l, m, n)\}, \]

\[d(m, S(m, l, m)) = \in\{d(1, b) : b \in S(m, l, m)\}, \]

\[d(n, S(n, m, l)) = \in\{d(1, c) : c \in S(n, l, m)\}.
\]

Hence there exist sequences \(p_k \in S(l, m, n) \), \(w_k \in S(m, l, m) \) and \(r_k \in S(n, m, l) \) such that \(\lim_{k \to \infty} d(k+1, p_k) = 0 \),

\[\lim_{k \to \infty} d(m, w_k) = 0 \]

and \(\lim_{k \to \infty} d(n, r_k) = 0.\)

It remains to prove that \(k \to \infty, p_k \to l, w_k \to m, r_k \to n.\)

Suppose that \(p_k \) does not converge to \(l \). Now as \(k \to \infty \)

\[d(p_k, l) < \lim_{k \to \infty} d(p_k, l) = 0, \]

\[d(p_k, l) + d(l, l) < d(p_k, l) + d(l, l) .\]

Therefore \(d(p_k, l) < d(p_k, l) \), which is a contradiction. Hence \(\lim_{k \to \infty} p_k = l.\)

Similarly we can prove that \(\lim_{k \to \infty} w_k = m, \lim_{k \to \infty} r_k = n.\)

Since \(S(l, m, n), S(m, l, m) \) and \(S(n, m, l) \) are compact so we have \(l \in S(l, m, n), m \in S(m, l, m) \) and \(n \in S(n, m, l).\)

This shows that \((l, m, n) \) is a tripled fixed point of \(S.\)

Using Theorem 2.1, we now prove a tripled coincidence and common fixed point theorems for a hybrid pair of multivalued and single valued mapping.

Theorem 2.2 Let \((X, d) \) be a complete metric space and let \(S : X \times X \times X \to CB(X) \) be a set valued mapping and \(f : X \to X \) satisfies

\[H(S(l, m, n), S(a, b, c)) \leq \max \left\{ \zeta \left(\max \{ \zeta(f(La), \zeta(fm, b), \zeta(fn, c) \} \right), \right. \\
\left. \zeta \left(\max \{ \zeta(a, b), \zeta(a, b), \zeta(a, b) \} \right) \right\} \\
\left\{ \max \{ \zeta(l, m), \zeta(m, n) \} \right\}\right].
\]

for some \(a_1 \in S(l, m), a_2 \in S(m, l), a_3 \in S(n, m) \) and \(b_1 \in S(a_1, b), b_2 \in S(b, b), b_3 \in S(c, c) \). Where \(x \in X, X \to [0, \infty) \) is lower semi continuous function and \(\zeta([0, \infty)) \to [0, \infty) \) be an upper semi continuous function.

Further assume that \(S(X \times X \times X) \subseteq f(X) \) Then \(S, f \) have a tripled coincidence point.

Further, \(S, f \) have a tripled common fixed point if one of the following conditions holds.

(a) \(S, f \) is \(w \)-compatible, there exists \(a_1, b_2, c_1 \in X \) such that \(\lim_{k \to \infty} f^k a_1 = a_1, \lim_{k \to \infty} f^{k+1} b_2 = b_2 \) and \(\lim_{k \to \infty} f^{k+1} c_1 = c_1 \) whenever \((l, m, n)\) is tripled coincidence point of \(S, f \) and \(f \) is continuous at \(a_1, b_2, c_1. \)

(b) There exists \(a_1, b_2, c_1 \in X \) such that \(\lim_{k \to \infty} f^k a_1 = a_1, \lim_{k \to \infty} f^{k+1} b_2 = b_2 \) and \(\lim_{k \to \infty} f^{k+1} c_1 = c_1 \) whenever \((l, m, n)\) is a tripled coincidence point of \((T, f) \) and \(f \) is continuous at \(l, m \) and \(n.\)

Proof: By Lemma 1.4, there exists \(E \subseteq X \) such that \(f : E \to X \) is one to one and \(f(E) = f(X) \).

Now define \(T : f(E) \times f(E) \to CB(X) \) by \(T(fL, fn, fM) = f(L, M, N) \) for all \(fL, fn, fM \in f(E). \)

Since \(f \) is one-one on \(E \), so \(T \) is well defined.

Now

\[H(T(fL, fm, fn), T(fa, fb, fc)) = H(S(l, m, n), S(a, b, c)) \]

\[\leq \max \left\{ \zeta \left(\max \{ \zeta(fLa, \zeta(fm, b), \zeta(fn, c) \} \right), \right. \\
\left. \zeta \left(\max \{ \zeta(a, b), \zeta(a, b), \zeta(a, b) \} \right) \right\} \\
\left\{ \max \{ \zeta(l, m), \zeta(m, n) \} \right\}\right].
\]

Hence \(T \) satisfies all the conditions and the contraction of Theorem 2.1. So by Theorem 2.1, \(T \) has a tripled fixed point say \((u, v, w) \in f(E) \times f(E) \times f(E). \)

Thus,

\[a_1 \in T(a_1, b_2, c_1), \]

\[b_2 \in T(b_2, a_3, b_1), \]

\[c_1 \in T(c_1, b_1, a_2). \]

Since \(S(X \times X \times X) \subseteq f(X) \), so there exists \(a_2, b_2, c_2 \in X \times X \times X \) such that \(f(a_2) = a_1, f(b_2) = b_2 \) and \(f(c_2) = c_1. \)

Now from the above relation we have

\[f(a_2) \in T(f(a_2), f(b_2), f(c_2)) = S(a_2, b_2, c_2), \]

\[f(b_2) \in T(f(b_2), f(a_2), f(b_2)) = S(a_2, b_2, b_2), \]

\[f(c_2) \in T(f(c_2), f(b_2), f(a_2)) = S(c_2, b_2, a_2). \]

This shows that \((a_2, b_2, c_2) \in X \times X \times X \) is a tripled coincidence point of \(S, f. \)

Suppose condition (a) holds.
Since \((a_2, b_2, c_2)\) is a tripled coincidence point of \(T\) and \(f\), there exists \(a_2, b_2, c_2 \in X\) such that \(\lim_{k \to \infty} f^{k}a_2 = a_2\), \(\lim_{k \to \infty} f^{k}b_2 = b_2\) and \(\lim_{k \to \infty} f^{k}c_2 = c_2\).

Since \(f\) is continuous at \(a_2, b_2\) and \(c_2\), we have \(f a_2 = a_2, f b_2 = b_2\) and \(f c_1 = c_2\).

Since \(f a_2 \in S(a_2, b_2, c_2)\), we have \(f^2 a_2 \in S(f(a_2, b_2, c_2)) \subseteq S(f(a_2, f(b_2, f(c_2))\).

Since \(f b_2 \in S(b_2, a_2, b_2)\), we have \(f^2 b_2 \in S(f(b_2, f(a_2, b_2)) \subseteq S(f(a_2, f(b_2, f(c_2))\).

Since \(f c_1 \in S(c_2, b_2, a_3)\), we have \(f^2 c_1 \in S(f(c_2, f(b_2, a_3)) \subseteq S(f(a_3, f(b_2, f(c_3))\).

This shows that \((f a_2, f b_2, f c_1)\) is a tripled coincidence point of \(T\) and \(f\).

Similarly, we can prove that \((f^k a_2, f^k b_2, f^k c_2)\) is a tripled coincidence point of \(T\) and \(f\).

Therefore we have
\[
\begin{align*}
\lim_{k \to \infty} & f^k a_2 \in S(f^{k-1} a_2, f^{k-1} b_2, f^{k-1} c_2) \\
\lim_{k \to \infty} & f^k b_2 \in S(f^{k-1} b_2, f^{k-1} a_2, f^{k-1} c_2) \\
\lim_{k \to \infty} & f^k c_2 \in S(f^{k-1} c_2, f^{k-1} b_2, f^{k-1} a_2).
\end{align*}
\]

Now,
\[
\begin{align*}
d(f a_2, S(a_2, b_1, c_1)) & \leq d(f a_2, f^k a_2) + d(f^k a_2, S(a_2, b_1, c_1)) \\
& \leq d(f a_2, f^k a_2) + (f^k a_2, f^k b_2, f^k c_2), S(a_2, b_1, c_1)) \\
& \leq d(f a_2, f^k a_2) \\
& + \max \left\{ \max \{\max(\phi(a_2, b_2, f(a_2, b_2, f(c_2))), \phi(a_2, f(b_2, c_2)), \phi(a_2, b_2, c_2)) \} \\
& - \max \{\max(\phi(a_2, b_2, f(b_2, c_2)), \phi(a_2, b_2, f(a_2, b_2, f(c_2))) \} \\
& \right. \\
& \right\} \\
& \leq d(f a_2, f^k a_2) + \max \left\{ \max \{\max(\phi(a_2, b_2, f(a_2, b_2, f(c_2))), \phi(a_2, b_2, f(a_2, b_2, f(c_2))) \} \\
& - \max \{\phi(a_2, b_2, f(b_2, c_2)), \phi(a_2, b_2, f(a_2, b_2, f(c_2))) \} \right\} \\
& \leq 0.
\end{align*}
\]

Letting \(k \to \infty\), we obtain
\[
\begin{align*}
d(f a_2, S(a_2, b_1, c_1)) & \leq d(f a_2, f a_2) \\
& + \max \left\{ \max \{\phi(a_2, b_2, f(a_2, b_2, f(c_2))), \phi(a_2, b_2, f(a_2, b_2, f(c_2))) \} \\
& - \phi(a_2, b_2, f(b_2, c_2)), \phi(a_2, b_2, f(a_2, b_2, f(c_2))) \right\} \\
& \leq 0.
\end{align*}
\]

which implies that \(f a_2 \in S(a_2, b_1, c_1)\).

Thus \(a_2 = f a_2 \in S(a_2, b_1, c_1)\). In the same way we can prove that \(b_2 = f b_2 \in S(b_1, a_2, c_1)\) and \(c_2 = f c_1 \in S(c_1, b_2, a_2)\).

This shows that \((a_2, b_1, c_1)\) is a tripled common fixed point of the hybrid pair \((S, f)\).

Suppose condition (b) holds.

Since \((a_2, b_2, c_2)\) is a tripled coincidence point of \((S, f)\), there exists \(a_2, b_2, c_2 \in X\) such that \(\lim_{k \to \infty} f^{k}a_1 = a_2, \lim_{k \to \infty} f^{k}b_1 = b_2\) and \(\lim_{k \to \infty} f^{k}c_1 = c_2\).

Since \(f\) is continuous at \(a_2, b_2\) and \(c_2\), we have
\[
\begin{align*}
f a_2 = a_2 & \quad f b_2 = b_2 \quad f c_2 = c_2.
\end{align*}
\]

Thus \(a_2 = f a_2 \in S(a_2, b_2, c_2)\), \(b_2 = f b_2 = S(b_2, a_2, b_2)\) and \(c_2 = f c_2 = S(c_2, b_2, a_2)\).

Hence \((a_2, b_2, c_2)\) is a tripled common fixed point of \((S, f)\).

Hence the results if proved.

REFERENCES

4. V. Berinde and M. Borcut Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Analysis. 2011, Volume 74(15), 4889-4897.

