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ABSTRACT 

Cancer is one of the prime causes of death presently. In normal cells, the firmly regulated pathway relays extracellular signals from the cell 

membrane to nucleus through a cascade of phosphorylation events. The Mitogen-Activated Protein Kinase (MAPK) cascades are among the most 

thoroughly studied signal transduction systems and have been proven to participate in a diverse array of cellular programs consisting of cell 

differentiation, cell movement, cell division and cell death. Constitutive activation of the MAPK cascade is associated with the carcinogenesis and 

melanoma development because of activating mutations within the B-RAF and RAS genes or other genetic or epigenetic modifications in their 

components or upstream activation of cell-surface receptors (e. g., EGFR and Flt-3) and chimeric chromosomal translocations (e. g. BCR-ABL) 

leading to elevated signaling activity eliciting cellular proliferation, invasion, metastasis, migration, survival and angiogenesis. Even in the absence 

of apparent genetic mutations, MAPK pathway has been stated to be activated in over 50% of Acute Myelogenous Leukemia (AML) and acute 

lymphocytic leukemia. In this brief review, we are about to outline the current advances in understanding the regulation of Mitogen-activated 

protein kinase signaling system and how can we generate specificity. 
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INTRODUCTION 

Cells respond to diverse extracellular signals by transmitting 

intracellular signals to coordinate appropriate responses. Proliferation, 

survival, differentiation, adhesion and motility of malignant cells are 

regulated by different intracellular signalling pathways. Signalling 

pathways are a group of molecule in the cell working in a cascade to control 

one or more cell functions such as cell division or death. These are mainly 

classified into subtypes: (a) Intracrine signalling (b) Autocrine signalling (c) 

Juxtacrine signalling (d) Paracrine signalling (e) Endocrine signalling. 

Abnormal activation of these signalling pathways leads to disturbed/ 

deranged cellular proliferation. Some of the possible cellular/ 

molecular mechanisms involved in cancer are (a) Degradation of 

interstitial collagens in extracellular matrix which is an integral 

component of tumor invasion and metastasis (b) Promotion of cell 

division by protooncogenes or by cell cycle 

suppression of tumor suppressor genes (c) Mutations in the p53 

genes (d) Mutations in BRCA-1 antibodies. Many pathways 

are involved in pathogenesis of cancer namely JAK-STAT signalling 

pathway, Mitogen-Activated Protein Kinase (MAPK) pathway, 

Phosphatidylinositol-3-kinases (PI3K)/Protein Kinase B (AKT) signalling 

pathway, Notch pathway, HEDgehog pathway, mTOR pathway yet MAPK 

pathway is of keen intrest due to its drug-resistant nature in cancer 

pathogenesis. This review will highlight several studies that are caried 

out from the year 1996 to 2018 in order to have a better understanding 

of MAPK pathway and its role in cancer pathogenesis.  

Expression of constitutively active components of the ERK pathway in 
addition to activation of PI3K/Akt/mTOR signaling either through 
mutation of pathway components or through activation of upstream 
signaling molecules cause deregulation of proliferation, resistance to 
apoptosis, transformation of cells and changes in metabolic 
characteristic of transformed cells which ultimately leads to 
carcinogenesis [1]. When the balance between cell division and growth 
on one hand, and programmed cell death (i.e. apoptosis) on the other is 
disturbed, it leads to carcinogenesis/oncogenesis. Growth factors, 
cytokines, and serum provide both mitogenic and anti-apoptotic signals 
to cells and thus play an important role in maintaining the homeostatic 
balance between cell proliferation and cell death. Due to this exquisite 
balance, proteins and signaling pathways regulating cell growth, 
differentiation and development undergo oncogenic changes regularly 
than other molecule groups [2]. The PI3K and MAPK pathways interact 
in multiple ways by co-regulating their functions leading molecular 

alterations, mutation or amplification of cell surface receptors which as a 
consequence leads to deregulated signaling and uncontrolled cell growth 
and survival causing oncogenic transformation and progression [3, 4]. 

 

 

Fig. 1: The mitogen-activated protein kinase (MAPK) signalling 

cascade 
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MAPK signalling pathway 

MAPKs are Proline-directed kinases which phosphorylate sites 

containing Serine/Threonine-Proline (S/T-P) motif that recognize 

the Proline at+1 position in the substrate [5, 6]. The classical MAPK 

pathway consists of RAS, RAF, MEK and ERK which consecutively 

proceed the proliferative signals generated at the cell surface 

receptors and through cytoplasmic signaling into the nucleus [7]. 

In normal cells the signaling cascade is stimulated by the binding of 

mitogens, hormones, or neurotransmitters to Receptor Tyrosine 

Kinases (RTKs) which upon dimerization instigate actuation of 

kinase activity in the cytoplasmic domain, triggering the activation 

of oncogenic RAS to increase cellular RAS-GTP levels [8, 9]. Those 

RTKs that connect for RAS or different parts of the RAS superfamily 

include: Epidermal Growth Factor Receptor (EGFR), c-KIT (CD117), 

Platelet-Derived Growth Factor Receptor (PDGFR), Vascular 

Endothelial Growth Factor Receptor (VEGF), fibroblast growth factor 

receptor and Fms-Related Tyrosine Kinase-3 (FLT-3) [10]. The 

activation of RAS leads to auto phosphorylation of C-terminal 

tyrosine residues that bind to Src Homology 2 (SH2) alternately 

Phosphotyrosine Binding (PTB) domains, for example, the adaptor 

protein Growth Factor Receptor-Bound Protein 2 (GRB2) [11, 12]. 

Mechanistically, the phosphorylated SH2 domain of the GRB2 

acquires Son of Sevenless (SOS) into close vicinity with inactive 

membrane restricted GDP-bound RAS as a result of prenylation and 

converts it into an active GTP-bound RAS [13, 14]. GTP-bound RAS in 

turn now binds with Raf-1 and B-Raf and target either one or both to 

the membrane and increase the kinase activity [15]. A-Raf activates 

MEK-1, B-Raf activate both MEK-1 and MEK-2 yet activate MEK-1 

superiorly than MEK-2 and C-Raf activate both MEK-1 and MEK [16-

18]. Once activated, RAF isoforms are able to phosphorylate the 

MAPK kinases, MEK1 and MEK2 and dual-specificity kinases. For 

example MKK4, a dual specificity kinase and member of MAPK which 

has the ability to directly phosphorylate Serine/Threonine along 

with Tyrosine residues leading to activation of two downstream 

pathways, C-Jun Terminal kinase (JNK) as well as P38 [19]. These 

kinases are perceived by MEK and phosphorylate tyrosine at Tyr-

185 and then proceed to phosphorylation of threonine at Thr-183 

residues in the Thr-X-Tyr activation loop of the MAPKs also known 

as ERK1 and ERK2 [20-22]. ERK1 and ERK2 direct: (a) increased 

proliferation, due to tumor suppressor inactivation and down 

regulation of cyclin-dependent kinases (b) increased survival 

through modulation of MITF and protection against FAS-induced 

apoptosis (c) invasion and metastasis due to extracellular matrix 

remodeling and angiogenesis [23-26]. ERK1 and ERK2 additionally 

are also associated with phosphorylating cytosolic signaling proteins 

including p90 Ribosomal S6 Kinase (RSK) and MAPK-interacting 

Serine/Threonine kinase and transcription factors, for example 

erythroblastosis virus E26, Elk-1, cAMP Response Element Binding 

Protein (CREB), c-Fos and c-Jun [27-33]. The Raf/MEK/ERK pathway 

can also modulate the activity of many proteins involved in 

apoptosis including: Bcl-2, Bad, Bim, Mcl-1, caspase 9 and Survivin 

where Bcl-2 and multi-drug-resistance gene expression are 

responsible for aberrant activation of MAPK pathway [34-37]. While 

activation of the MAPK pathway seems essential in the biology of 

melanoma, mechanisms other than RAS or BRAF mutation may also 

contribute to the constitutive MAPK signaling in invasive melanoma. 

These include: (1) increased coupling of RAS to cell surface RTKs 

(such as c-KIT) resulting in upregulation of RTKs expression (2) 

overexpression and accumulation of wild-type RAS protein (3) 

constitutive expression of growth factors such as hepatocyte growth 

factor or fibroblast growth factor (4) upregulated growth factor 

receptors such as c-MET (receptor for hepatocyte growth factor) 

leads to aberrant signaling or (5) negative regulators of ERK 

expression has been decreased [38-42]. Moreover, increase 

expression of VEGF-R receptors has been observed in AML which 

could result in activation of this pathway. Constitutive activation of 

the Raf/MEK/ERK pathway has been implicated in invasion, 

metastases, angiogenesis and radioresistance. Reactive oxygen 

species either through growth factor receptor activation including 

EGFR and PDGF or through reactive oxygen intermediate-induced 

receptor activation activate RAS and initiate MAPK signaling 

cascade. ROS will induce the activation of the ERK1/2 signaling 

pathway in Ras negative cells [43, 44]. 

Genetic modification prompting activation of MAPK pathway 

Dysregulation of the MAPK pathway often takes place in 

malignancies wherein receptor tyrosine kinase (RTKs), generally, 

the Epidermal Growth Factor Receptor(EGFR), are 

constitutively active as result of somatic mutation, gene 

amplification, increased autocrine or paracrine signalling. In 

addition to the mutations within the components of the 

pathway inclusive of the RAS, BRAF and MEK genes may also result 

in the constitutive activation of the signalling cascade [45, 46]. 

 

 

Fig. 2: Contributors for MAPK dysregulation 

 

A recent study showed that Mitogen-Activated Protein Kinase 14 

(MAPK 14), also called p38α plays a key role in inflamation cytokine 

induction such as Tumor Necrosis Factor(TNF α) [47]. 

A study confirmed that MAPK is directly involved in resistance 

development of breast cancer cells against Gefitinib drug (EFGR 

inhibitor). The principle mechanism via which MAPK prevent 

induction of apoptosis is p90rsk-1 mediated phosphorylation of 

proapoptic BAD in serine 112. Phosphorylation of this site inhibits 

apoptosis through sequestering BAD in cytosol and preventing its 

interaction with Bcl-XL [48]. In RAS genes maximum somatic 

mutations are detected typically in codons 12, 13, 59 and 61 leading 

to single-amino-acid substitutions [49]. All mutations compromise 

the hydrolysis activity through intrinsic and GTPase-activating-

protein-stimulated of GTP. Activating point mutations in RAS genes 

arise in about 30% of human cancers. A current study propose that 

10–50% of individuals diagnosed with myelodysplastic syndrome or 

AML have RAS mutations which are often point mutation that 

modify RAS activity and additionally perturb the Raf/MEK/ERK 

kinase cascade [50-52]. 

Mutations in KRAS account for approximately 85% of overall RAS 

mutations and is most often mutated RAS isoform in human cancer 

followed by NRAS (about 15%) including the brain, uveal and 

mucosal primaries and are absent in cancer of soft parts and HRAS 

(less than 1%) [53, 54]. Somatic mutations of KRAS were found at a 

high percentage in pancreatic cancer (69%), in 16% of lung cancers 
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and in approximately 35% of colon cancer, while they may be rarely 

found in breast cancer (approximately 3%). Mutations in NRAS were 

found in cancer (19%) and with lower frequency in colon cancer 

(2%) and breast cancer (2%). A study showed that the oncogenic 

BRAF antagonize COT expression largely through altered protein 

stability and the wild type BRAF produce COT which induce Thr 

202/Tyr 204 phosphorylation of ERK1 in vitro indicating that COT 

expression might also potentiate ERK activation in a MEK-

independent manner [55]. Mutations rates for BRAF gene is 50%-

70% many of which are clustered inside the P-loop (exon 11) and 

within the activation segment (exon 15) of the kinase domain [56]. 

These mutations destabilize the inactive conformation of the 

protein, disrupting the interaction between the P-loop and the 

activation segment which typically locks the kinase in the inactive 

conformation ensuing in constitutive activation of the MAPK 

pathway [57, 58]. The substitution of a valine residue at position 600 

for glutamic acid (V600E) accounts for about (80%-90%) of the 

BRAF mutations observed in human cancers [59-63]. Activating 

BRAF mutations have additionally been documented in a variety of 

human cancers inclusive of papillary thyroid carcinoma, colorectal 

cancer, cholangiocarcinoma, and esophageal carcinoma (Barrett’s), 

gastric cancer, squamous cell carcinoma of the head and neck, lung 

cancer, ovarian tumors, in addition to AML and non-Hodgkin’s 

lymphoma [64-75]. Whilst MAPK activation may be essential for 

melanoma initiation, facts suggest that additional molecular events 

are also required probably exerted via V600E BRAF modulation of 

different pathways such as Hypoxia-Inducible Factor 1-a (HIF 1-a) 

[76]. Other mutations bring about BRAF proteins with impaired 

kinase activity in comparison with wild type BRAF. The impaired-

activity BRAF mutants aren’t capable of activating MEK directly 

however can stimulate CRAF that in turn activates MEK while the 

activated BRAF mutants signal to MEK directly. BRAF kinase 

mutations arise in about 8% of human carcinomas most frequently 

in melanoma (41%), thyroid (45%), colorectal (10%-14%) and 

mismatch repair-deficient tumors (31%) [77]. A low frequency (1-

3%) of BRAF mutations has been observed in a number of different 

tumor types along with breast cancer. A recent study suggested that 

BRAF has 3 AKT phosphorylation sites: (a) Thr439 (b) Ser428 and 

(c) Ser364 (conserved in RAF1). In vitro alanine substitution at 

Thr439 results in BRAF activation via loss of AKT-induced inhibition 

with gradually increased BRAF activity as the additional sites are 

mutated [78]. 

  

 

Fig. 3: Mutations of MAPK cascade components 

 

Mutations of ARAF have not been recognized while CRAF is hardly 

ever mutated. A study confirmed that RAF inhibitors efficiently blocks 

MAPK signaling led to reduced growth in tumors which arise because 

of V600E BRAF mutation however results in activation of CRAF by 

inducing dimerization, membrane localization and interaction with 

Ras-GTP which ultimately activate MAPK pathway and results in 

enhanced growth [79]. MEK mutations have been rarely detected in 

human cancers inclusive of melanomas (3%) and colon (2%) 

carcinomas. Those mutations lead to a gain of function of kinase 

activity ensuing inactivation not only of MEK but also of ERK [80]. 

Numerous different researches have demonstrated that EGFR and 

KRAS mutations are mutually exclusive in Non-Small-Cell Lung 

Carcinoma (NSCLC) [81, 82]. In melanomas lacking B-RAF or RAS 

mutations the signaling cascade is induced via different autocrine 

mechanisms which includes C-MET overexpression, a receptor for 

hepatocyte growth factor or via down-regulation of MAPK pathway 

inhibitory proteins consisting of RAF-1 inhibitory protein or SPRY-2 

[83]. Mutations in upstream receptors including Flt-3 (20–30%), kit 

(7–17% of AMLs), Fms (12% of MDS) and Granulocyte Colony-

Stimulating Factor Receptor (G-CSF-R) have been documented in AML 

and could cause the activation of the Ras/Raf/MEK/ERK pathway [84]. 

In a study it has been proven that MAPK activity regulates 
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proliferation through regulation of cyclin D1 expression and increase 

expression of cyclin D1 provide BRAF inhibitor resistance that is more 

advantageous through elevated CDK4 expression, frequently 

deregulated in cancer via couple of mechanisms [85]. 

CONCLUSION 

The MAPK pathway plays a crucial role in controlling cellular 

proliferation, survival and invasion. Constitutive activation of MAPK 

is common event in human cancer and is often the result of 

molecular alteration of key components of signaling cascade. The 

challenge remains to identify the most efficient members of the 

signaling cascade to target and drugs which might be bioavailable 

with negligible toxicity-related side effects. By elucidating those 

unique profiles and using an appropriate combination of therapeutic 

agents we will impact survival in melanoma. 

ABBREVIATION 

MAPK: Mitogen Activated Protein Kinase, AML: Acute Amyloid 

Leukemia, PI3K: phosphatidylinositol-3-kinases (PI3K), AKT: 

Protein Kinase B, BRCA-1: Breast Cancer gene, RTKs: Receptor 

Tyrosine Kinases, (EGFR): Epidermal Growth Factor Receptor, 

(PDGFR): Platelet-Derived Growth Factor Receptor, (VEGF): 

Vascular Endothelial Growth Factor Receptor, (FLT-3): fms-Related 

Tyrosine Kinase-3, (SH2): Src Homology 2, (PTB): Phosphotyrosine 

Binding, (GRB2): Growth Factor Receptor-Bound Protein 2. 
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