ISSN 2394-5125
 

Research Article 


ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS

Ms.K.Kokila, Ms.R.Elankeerthana.

Abstract
A social media stock having a huge amount of data like Tweets, it may get broke down to study the
perspectives or maybe feelings which having a place with the overall population toward long advertise pioneers. This paper
concentrates after estimating the sentiments together in races of political parties by utilizing overall population
contemplation and assessments on Tweets. The paper means to understand whether twitter posts can be used just on the
grounds that valuable strategy in estimating the determination results or maybe is unquestionably this basically a social.
Programming interfaces are utilized to extricate tweets about the political parties from the twitter (web based life). By
mining the twitter information the general visibility of a political individual can be broke down this predication will assist
with recognizing the popular feeling. After sufficient measure of twitter presents will be accumulated on acquire
assessment, we are getting on positive twitter posts for BJP, this was mostly worthy rate when contrasted and different
tweets also. On assessing this outcome with the leave surveys and the genuine determination results, the expectation of
winning party by the tweets information assessment is certainly right.

Key words: twitter data (API), python, sentiment analysis, mongo DB.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Ms.K.Kokila
Articles by Ms.R.Elankeerthana
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ms.K.Kokila, Ms.R.Elankeerthana. ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. JCR. 2020; 7(5): 1813-1818. doi:10.31838/jcr.07.05.305


Web Style

Ms.K.Kokila, Ms.R.Elankeerthana. ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. http://www.jcreview.com/?mno=109542 [Access: August 18, 2021]. doi:10.31838/jcr.07.05.305


AMA (American Medical Association) Style

Ms.K.Kokila, Ms.R.Elankeerthana. ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. JCR. 2020; 7(5): 1813-1818. doi:10.31838/jcr.07.05.305



Vancouver/ICMJE Style

Ms.K.Kokila, Ms.R.Elankeerthana. ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. JCR. (2020), [cited August 18, 2021]; 7(5): 1813-1818. doi:10.31838/jcr.07.05.305



Harvard Style

Ms.K.Kokila, Ms.R.Elankeerthana (2020) ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. JCR, 7 (5), 1813-1818. doi:10.31838/jcr.07.05.305



Turabian Style

Ms.K.Kokila, Ms.R.Elankeerthana. 2020. ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. Journal of Critical Reviews, 7 (5), 1813-1818. doi:10.31838/jcr.07.05.305



Chicago Style

Ms.K.Kokila, Ms.R.Elankeerthana. "ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS." Journal of Critical Reviews 7 (2020), 1813-1818. doi:10.31838/jcr.07.05.305



MLA (The Modern Language Association) Style

Ms.K.Kokila, Ms.R.Elankeerthana. "ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS." Journal of Critical Reviews 7.5 (2020), 1813-1818. Print. doi:10.31838/jcr.07.05.305



APA (American Psychological Association) Style

Ms.K.Kokila, Ms.R.Elankeerthana (2020) ANALYSING TWITTER DATA FOR PREDICTIN ELECTION RESULTS. Journal of Critical Reviews, 7 (5), 1813-1818. doi:10.31838/jcr.07.05.305