ISSN 2394-5125
 

Research Article 


ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju.

Abstract
Coronary illness is one of the most common types of disease worldwide. It is one of the main causes of death
in many parts of the world irrespective of gender. Data mining has been the most developed and efficient methodology in
the field of medicine in recent times to discover the various types of diseases with precision. The dataset used in this
paper is from University Of California Irvine (UCI) repository. Classification has a vital role in data analysis. The
clustering has been done based on the classification of data. In this paper, five algorithms have been implemented namely
J.48, MLP, SVM, Random Forest and Bayesnet to find out which among these algorithms gives the best prediction of
accuracy. Particle Swarm Optimization (PSO) calculation, It is the Majority one remarkable transformative calculations,
be utilized in the paper for coronary illness. The proposed model stand outs to be sophisticated so that it can be used to
built a data mining model used for better accuracy prediction.

Key words: Data mining; Heart disease; Particle swarm optimization; Decision tree Random forest


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Mrs.Hemalatha S
Articles by Mr.Srihariakash K
Articles by Mrs.Kavitha T
Articles by Mr.Abbireddy B D V V Gangaraju
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. JCR. 2020; 7(5): 1795-1800. doi:10.31838/jcr.07.05.303


Web Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. http://www.jcreview.com/?mno=109523 [Access: August 17, 2021]. doi:10.31838/jcr.07.05.303


AMA (American Medical Association) Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. JCR. 2020; 7(5): 1795-1800. doi:10.31838/jcr.07.05.303



Vancouver/ICMJE Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. JCR. (2020), [cited August 17, 2021]; 7(5): 1795-1800. doi:10.31838/jcr.07.05.303



Harvard Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju (2020) ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. JCR, 7 (5), 1795-1800. doi:10.31838/jcr.07.05.303



Turabian Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. 2020. ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. Journal of Critical Reviews, 7 (5), 1795-1800. doi:10.31838/jcr.07.05.303



Chicago Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. "ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES." Journal of Critical Reviews 7 (2020), 1795-1800. doi:10.31838/jcr.07.05.303



MLA (The Modern Language Association) Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju. "ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES." Journal of Critical Reviews 7.5 (2020), 1795-1800. Print. doi:10.31838/jcr.07.05.303



APA (American Psychological Association) Style

Mrs.Hemalatha S, Mr.Srihariakash K, Mrs.Kavitha T, Mr.Abbireddy B D V V Gangaraju (2020) ANALYSIS OF RELIABLE APPROACH FOR PREDICTION OF HEART DISEASE USING DATA MINING TECHNIQUES. Journal of Critical Reviews, 7 (5), 1795-1800. doi:10.31838/jcr.07.05.303