ISSN 2394-5125
 

Research Article 


DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF)

Dr.M.Renuka Devi, S.Suganyadevi.

Abstract
Digital images are corrupted by various types of noise in image acquisition process. But medical images are affected by
speckle noise. So de-noising of image plays vital role in diagnose the disease. This paper explained the method to detect
the kidney stones prediction by image processing techniques. Image processing takes the CT,MRI and Ultrasound
Image as input. But ultrasound image is cost effective when compared with other images. Ultra sound image of kidney
stone images are taken as input by this research. This research work proposed a new filter Prewitt Smooth Convolution
Filter (PSCF). Generally Ultrasound image contains speckle noise, it is multiplicative noise and it is difficult to remove.
However, various filters are available to remove this noise but when compared with mean filter, median filter, Gaussian
filter proposed Prewitt Smooth Convolution Filter (PSCF) produced better result.

Key words: Ultrasound, Mean Filter, Median Filter, Gaussian Filter Proposed Prewitt Smooth Convolution Filter (Pscf)


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Dr.M.Renuka Devi
Articles by S.Suganyadevi
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Dr.M.Renuka Devi, S.Suganyadevi. DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . JCR. 2020; 7(10): 1779-1787. doi:10.31838/jcr.07.10.319


Web Style

Dr.M.Renuka Devi, S.Suganyadevi. DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . http://www.jcreview.com/?mno=105152 [Access: August 17, 2021]. doi:10.31838/jcr.07.10.319


AMA (American Medical Association) Style

Dr.M.Renuka Devi, S.Suganyadevi. DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . JCR. 2020; 7(10): 1779-1787. doi:10.31838/jcr.07.10.319



Vancouver/ICMJE Style

Dr.M.Renuka Devi, S.Suganyadevi. DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . JCR. (2020), [cited August 17, 2021]; 7(10): 1779-1787. doi:10.31838/jcr.07.10.319



Harvard Style

Dr.M.Renuka Devi, S.Suganyadevi (2020) DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . JCR, 7 (10), 1779-1787. doi:10.31838/jcr.07.10.319



Turabian Style

Dr.M.Renuka Devi, S.Suganyadevi. 2020. DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . Journal of Critical Reviews, 7 (10), 1779-1787. doi:10.31838/jcr.07.10.319



Chicago Style

Dr.M.Renuka Devi, S.Suganyadevi. "DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) ." Journal of Critical Reviews 7 (2020), 1779-1787. doi:10.31838/jcr.07.10.319



MLA (The Modern Language Association) Style

Dr.M.Renuka Devi, S.Suganyadevi. "DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) ." Journal of Critical Reviews 7.10 (2020), 1779-1787. Print. doi:10.31838/jcr.07.10.319



APA (American Psychological Association) Style

Dr.M.Renuka Devi, S.Suganyadevi (2020) DE-NOISING OF KIDNEY STONE ULTRASOUND IMAGE USING PREWITTSMOOTH CONVOLUTION FILTER (PSCF) . Journal of Critical Reviews, 7 (10), 1779-1787. doi:10.31838/jcr.07.10.319