ISSN 2394-5125
 

Research Article 


A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM

R Ravi Kumar, M Babu Reddy.

Abstract
The recognition/classification of a given pattern is characterized by one of the two following tasks. Supervised
classification is a problem of establishing decision regions between patterns and assigning an unknown input
pattern into one of the predefined classes. In unsupervised classification, classes are learned based on the
similarity of patterns. Supervised can lead to reduction in accuracy during classification of instances. Variable
selection is the most essential function in predictive analytics that reduces the dimensionality, without losing
appropriate information by selecting a few significant features of machine learning problems. The major
techniques involved in this process are filter and wrapper methodologies. While filters measure the weight of
features based on the attribute weighting criterion, the wrapper approach computes the competence of the
variable selection algorithms. The wrapper approach is achieved by the selection of feature subgroups by pruning
the feature space in its search space. The objective of this paper is to choose the most favourable attribute subset
from the novel set of features, by using the combination method that unites the merits of filters and wrappers. To
achieve this objective, an Hybrid Feature Selection (HFS) method is performed to create well-organized learners.
The results of this study shows that the HFS algorithm can build competent business applications, which have
got a better precision than that of the constructed which is stated by the previous hybrid variable selection
algorithms.

Key words: Classification, Feature Selection, Feature Extraction, Filter Methods HFSA.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by R Ravi Kumar
Articles by M Babu Reddy
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

R Ravi Kumar, M Babu Reddy. A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. JCR. 2020; 7(17): 2748-2753. doi:10.31838/jcr.07.17.342


Web Style

R Ravi Kumar, M Babu Reddy. A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. http://www.jcreview.com/?mno=102036 [Access: June 02, 2021]. doi:10.31838/jcr.07.17.342


AMA (American Medical Association) Style

R Ravi Kumar, M Babu Reddy. A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. JCR. 2020; 7(17): 2748-2753. doi:10.31838/jcr.07.17.342



Vancouver/ICMJE Style

R Ravi Kumar, M Babu Reddy. A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. JCR. (2020), [cited June 02, 2021]; 7(17): 2748-2753. doi:10.31838/jcr.07.17.342



Harvard Style

R Ravi Kumar, M Babu Reddy (2020) A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. JCR, 7 (17), 2748-2753. doi:10.31838/jcr.07.17.342



Turabian Style

R Ravi Kumar, M Babu Reddy. 2020. A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. Journal of Critical Reviews, 7 (17), 2748-2753. doi:10.31838/jcr.07.17.342



Chicago Style

R Ravi Kumar, M Babu Reddy. "A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM." Journal of Critical Reviews 7 (2020), 2748-2753. doi:10.31838/jcr.07.17.342



MLA (The Modern Language Association) Style

R Ravi Kumar, M Babu Reddy. "A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM." Journal of Critical Reviews 7.17 (2020), 2748-2753. Print. doi:10.31838/jcr.07.17.342



APA (American Psychological Association) Style

R Ravi Kumar, M Babu Reddy (2020) A FRAME WORK TO ELIMINATE IRRELEVANT FEATURES USING HYBRID FEATURE SELECTION ALGORITHM. Journal of Critical Reviews, 7 (17), 2748-2753. doi:10.31838/jcr.07.17.342