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Abstract 

 

Rafal Ablamowicz have shown the Classification of Clifford algebra 𝐶𝑙(𝑝,𝑞) as images of group algebra of 

SalingarosVeegroup 𝐺(𝑝,𝑞).Here 𝐺(𝑝,𝑞) is a 2-group of order2p+q+1 belonging to one of Salingaros isomorphic classes 

𝑁2𝑘−1, 𝑁2𝑘, Ω2𝑘−1, Ω2𝑘  and 𝑆𝑘which are non-isomorphic to each other and every real Clifford Algebra 𝐶𝑙(𝑝,𝑞) is ℝ -

isomorphic to a quotient of a group algebra ℝ[𝐺(𝑝,𝑞)]. In this paper we show how group structure of Salingaros Vee group 

𝐺(𝑝,𝑞) in the presence of normal subgroup and central product structure carry over Clifford Algebra 𝐶𝑙(𝑝,𝑞). 
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1. Introduction 

 

The Clifford algebras have been developed with the involvement of several Mathematicians and physicists such as Rudolf 

Lipschits, Theodor Valen, Elie Cartan, Claude Chevalley reinvented the ”Clifford Algebra” [1] and established its power as a 

formal mathematics and physics language. Specifically, David Hesten and Elie Cartan are notable contributors to the 

progress and development of Clifford algebra. Elie Cartan presented the idea of the spinor in 1913 and in 1938 the idea of 

the pure spinor and he defined Clifford algebra’s as algebras of matrices and found that 8 has a periodicity inside these 

algebraic structures, for more info, refer [2]. David Hesten extended the concept of “Clifford Algebra” to devise a formalism 

and calls it Geometric Algebra [3]. He defines orthogonal operators as similarity transformations on Euclidian space E, which 

can also be considered as group actions in Clifford Algebra on the underlying Vector Space. Salingaros has noted that these 

groupings are members of five non-isomorphic families [4, 5]. However, one is aware that there are five distinct families into 

which all Clifford algebras 𝐶𝑙(𝑝,𝑞) may be divided as simple and semi simple algebras depending on the values of (p, q) and 

p + q (the Periodicity of Eight)[6, 7, 8]. In this paper we will discuss the algebraic structure of Salingaraos Vee group over the 

Clifford Algebra𝐶𝑙(𝑝,𝑞) 
[9, 10, 11]. 

 

2. Preliminaries 

2.1 Clifford’s original definition 

 

Grassmann’s exterior algebra ∧ Rn of the linear space Rn is an associative algebra of dimension 2n. In terms of a basis { 

𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 } for Rn the exterior algebra ∧ Rn has a basis, 

1 

𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 

𝜎1 ∧ 𝜎2,  𝜎1 ∧ 𝜎3, … . 𝜎1 ∧ 𝜎𝑛 ,  𝜎2 ∧ 𝜎3, … … 𝜎(𝑛 − 1) ∧ 𝜎𝑛 

. 

. 

. 

𝜎1 ∧ 𝜎2 ∧ 𝜎3 … … ∧ 𝜎𝑛 

 

The exterior algebra has unit 1 and satisfies the multiplication rules 

𝜎𝑖 ∧ 𝜎𝑗 = −𝜎𝑗 ∧ 𝜎𝑖  for 𝑖 ≠ 𝑗 

                                                     𝜎𝑖 ∧ 𝜎𝑖 = 0 (1)  

Clifford in 1882 kept the first rule but altered the second rule, and arrived at the multiplication rule 

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖  for 𝑖 ≠ 𝑗 

                                                         𝜎𝑖𝜎𝑖 = 1 (2) 
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This time { 𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 } is an orthonormal basis for the positive definite Euclidean space 𝑅𝑛. An associative algebra 

of dimension 2n so defined is the Clifford algebra 𝐶𝑙𝑛. 

Clifford in 1878, considered the multiplication rules 

 

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖  for 𝑖 ≠ 𝑗 

                                                         𝜎𝑖𝜎𝑖 = −1 (3) 

 

of the Clifford algebra 𝐶𝑙(0,𝑛) of the negative definite space 𝑅(0,𝑛) refer [7, 8]. 

 

2.2 Clifford Algebra 

 

All real Clifford algebras are defined on the underlying real vector space n, the space of vectors with n real components on 

which we are giving a non-degenerated quadratic form 𝑄 = 𝑥𝑡 = 𝑄𝑥. since Q is symmetric, it’s eigen values are real and Q 

is non-degenerated hence it has p positive and q negative eigen values with p + q = n. The pair (p, q) is called the signature 

of Q and is the only important property of Q in defining the associative Clifford Algebra. This algebra will be written as 

𝐶𝑙(𝑝,𝑞) or some times 𝐶𝑙(𝑄). 

The orthonormal basis { 𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 } in 𝐸𝑛 relative to Q, so that 

 

                                                    𝜎𝑖
T𝑄𝜎𝑖 = 0,for 𝑖 ≠ 𝑗 

                               
𝜎𝑖

T𝑄𝜎𝑖 = {
+1, 𝑖 = 1 … 𝑝
−1, 𝑖 = 𝑝 + 1 … . . 𝑝 + 𝑞 = 𝑛

, for 𝑖 = 𝑗 (4) 

 

Define multiplication to be an associative operation which satisfies the two conditions, 

                                   
𝜎𝑖

2 = {
+1, 𝑖 = 1 … 𝑝
−1, 𝑖 = 𝑝 + 1 … . . 𝑝 + 𝑞 = 𝑛

, for𝑖 = 𝑗                                  (5) 

  

                                 𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖  for 𝑖 ≠ 𝑗 (6) 

 

The above equations allow us to define, any product 𝜎𝑖1
𝜎𝑖2

… … 𝜎𝑖𝑠
for 𝑖1 < 𝑖2 < ⋯ . < 𝑖𝑠, is asubset of {1,2,3,....n}, because 

from equation (6) we can always reorder the indices, for example, 

 

𝜎1𝜎2𝜎3 = (𝜎1𝜎2)𝜎3 = −(𝜎2𝜎1)𝜎3 = −𝜎2(𝜎1𝜎3) = 𝜎2(𝜎3𝜎1) = (𝜎2𝜎3)𝜎1 = −𝜎3𝜎2𝜎1 
 

Therefore the Clifford algebra is a vector space spanned by the product 𝜎𝑖1
𝜎𝑖2

… … 𝜎𝑖𝑠
, whoseelements can always be written 

in increasing order [12]. 

The following formal polynomial represents an arbitrary element 𝒜 inthe Clifford Algebra 𝐶𝑙(𝑝,𝑞): 

         
𝒜 = 𝑎0𝜎0 + ∑  𝑛

𝑖=1 𝑎𝑖𝜎𝑖 + ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑎𝑖𝑗𝜎𝑖𝑗 + ⋯ + ∑  𝑛
𝑖1=1 … ∑  𝑛

𝑖𝑘=1 𝑎𝑖1…𝑖𝑘𝜎𝑖1…𝑖𝑘
+

+ ⋯ + 𝑎12…𝑛𝜎12…𝑛 = ∑  𝑛
𝑘=0 𝑎𝑖1𝑖2…𝑖𝑘𝜎𝑖1𝑖2…𝑖𝑘

     (7) 

 

2.3 Fundamental Automorphism of Clifford Algebra 
 

Clifford Algebra 𝐶𝑙(𝑝,𝑞) has four fundamental automorphism, which are as follows, refer [10]. 

 

2.3.1 Identity 

 

Let 𝒜 be any random element of Clifford Algebra 𝐶𝑙(𝑝,𝑞), the Identity automorphism from 𝒜 → 𝒜 is one which carries 𝜎𝑖 →

𝜎𝑖. 

 

2.3.2 Involution 

 

Let 𝒜 = 𝒜′ + 𝒜′′ be the decomposition of an element of Clifford Algebra 𝐶𝑙(𝑝,𝑞), where 𝒜′ and 𝒜′′ contains homogeneous 

odd and even components individually, then automorphism       𝒜 → 𝒜∗ is the Involution so that the sign of the elements of 

𝒜′′ doesn’t change and the sign of elements of 𝒜′ changes, i.e, 

 

𝒜∗ = −𝒜′ + 𝒜′′ 
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In general Involution automorphism caries 𝜎𝑖 → −𝜎𝑖, for any element of 𝒜. 

The Involution automorphism can also be expressed with the help of the volume element 𝜔, i.e = 𝜎𝑖1𝑖2
… .𝑖𝑝+𝑞

, such that, 

𝒜 = 𝜔𝒜𝜔−1, where 𝜔−1 = (−1)
(𝑝+𝑞)(𝑝+𝑞−1)

2 𝜔 refer [12, 14]. 

 

2.3.3 Reversion 

 

The Reversion of any element of Clifford Algebra 𝐶𝑙(𝑝,𝑞) is the Antiautomorphism from 𝒜 → �̃�, that is an alternative to any 

basis element 𝜎𝑖1𝑖2
… .𝑖𝑘

∈ 𝒜 by an element of𝜎𝑖𝑘𝑖𝑘−1
… .𝑖1

, such that: 

                                                  𝜎𝑖1𝑖2
… .𝑖𝑘

= (−1)
𝑘(𝑘−1)

2 𝜎𝑖𝑘𝑖𝑘−1
… .𝑖1

, 

 

Hence for any element 𝒜 of Clifford Algebra 𝐶𝑙(𝑝,𝑞), 

 

�̃� = (−1)
𝑘(𝑘−1)

2 𝒜 
 

2.3.4 Conjugation 

 

The Conjugation of any element 𝒜 of Clifford Algebra 𝐶𝑙(𝑝,𝑞) is the Antiautomorphism from 𝒜 → �̃�* which is the 

composition of Involution and Reversion Automorphism, [11] such that  

 

                                                           �̃�*= (−1)
𝑘(𝑘−1)

2 𝒜 

 

3. Clifford Algebras as Projections of Group Algebras 

3.1 Group Algebra 

 

Let G be a finite group with m elements, The Group algebra 𝔽[𝐺]over the field 𝔽 is the linear combinations of finitely many 

elements of G with coefficients in 𝔽 i.e, 

 

𝜆1𝑔1 + 𝜆2𝑔2 + 𝜆3𝑔3 + ⋯ + 𝜆𝑚𝑔𝑚 for 𝑔𝑖 ∈ 𝐺, 𝜆𝑖 ∈ 𝔽, 𝑖 = 1,2, … 𝑚 
 

In general, we can rewrite the above linear combination with the algebraic multiplication [6] determined by the group product 

as follows, 

𝔽[𝐺] = {∑  

𝑔∈𝐺

𝜆𝑔𝑔, 𝜆𝑔 ∈ 𝔽} 

 

3.2 Group Algebra and their projection on Clifford Algebra 
In this paper, we focus only on real group algebras of finite 2-groups, in particular, Salingaros Vee groups. 

 

Definition 1: A group G is said to be p-group where p is a prime, if every element of group G is of order pk where k ≥ 1. 

Therefore any finite group of order pk is called p-group. 

As we know quaternion group and the dihedral group are the only group of order eight which are non-abelian groups. 

 

The Quaternion group has the representation 𝑄8 = {𝑎, 𝑏|𝑎4 = 1, 𝑎2 = 𝑏2, 𝑏𝑎𝑏−1 = 𝑎−1}. Vladimir M. Chernov given 

another representation of quaternion group 𝑄8, [13] as follows, 

 

                                                   𝑄8 = {휀, 𝜏, 𝐼, 𝐽, 𝐼𝐽, 𝜏𝐼, 𝜏𝐽, 𝜏𝐼𝐽} 

which can also be write, 

                                                       = {𝐼, 𝐽, 𝜏|𝜏2 = 1, 𝐼2 = 𝐽2 = 𝜏, 𝐼𝐽 = 𝜏𝐽𝐼} 
 

Under the operation of group multiplication, where 휀 is the identity element of the group 𝑄8the elemen τ is the Involution 

such that 𝜏2 = 휀 the element τ is like (-1), with I = a, J = b, τ =𝑎2. 

 

The order structure of quaternion group 𝑄8 is {1, 1, 6} i.e. it has one element of order one, one element of order two and six 

element of order four. The center of𝑄8 is 𝑍 = (𝑄8) = {1, 𝑎2} which is isomorphic to C2 [5]. 

 

Vladimir M. Chernov’s representation of the Dihedral group 𝐷8 = {a, b|𝑎4 = 𝑏2 = 1, 𝑏𝑎𝑏−1 = 𝑎−1}. is as follows, 
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𝐷8 = {휀, 𝜏, 𝛿1, 𝛿2, 𝛿3, 𝜏𝛿1, 𝜏𝛿2, 𝜏𝛿3}

= {𝛿, 𝜏 ∣ 𝛿4 = 𝜏2 = 1, 𝜏𝛿𝜏−1 = 𝛿−1}
 

 

The group multiplication is defined by 𝜏2 =  휀, 𝛿4 = 휀, 𝜏𝛿 = 𝛿3𝜏, where ε is the identity element of the group 𝐷8 with τ = a, 

δ = b. 

 

The order structure of Dihedral group 𝐷8 is {1, 5, 2} and center of 𝐷8 is 𝑍 = (𝐷8) = {1, 𝑎2}. which is isomorphic to C2. 

 

Now, recall the examples of Clifford Algebra as projection of group algebra from Vladimir M. Chernov’s and Anne Marie 

Walley [3, 12, 14] for the construction of ℍ ≅ 𝐶𝑙0,2 as
𝐸[𝑄8]

𝐽⁄ and 𝐶𝑙1,1as
𝐸[𝐷8]

𝐽⁄ .  

 

Example 1: Define an E − algebra map 𝜓: 𝐸[𝑄8] → ℍ =  {1, i, j, ij } as follows, 

 

1 → 1, 𝜏 → −1, 𝐼 → 𝑖, 𝐽 → 𝑗 

 

Let𝑢 𝜖 𝐸[𝑄8], then Ker 𝜓 = {∑  𝑔∈𝑄8
𝜆𝑔𝑔, : 𝜓(𝑢) = 0} = 𝐽 = (1 + 𝜏) for central involution τ=𝑎2in 𝑄8 so that the dimEJ = 4 

and 𝜓is bijective [12]. 

 

Let 𝜋: 𝐸[𝑄8] →
𝐸[𝑄8]

𝐽⁄  be the natural map u → u +  J the there exists an isomorphism, 𝜑:
𝐸[𝑄8]

𝐽⁄  → ℍ such that 𝜑𝑜 𝜋 =

 𝜓 by first Isomorphism Theorem (4). It is necessary to verify that I + J, J + J fulfill the relations of the generators of 𝐶𝑙0,2. 

 

Now Consider the following, 

 

𝜋(𝐼2) = 𝐼2 + 𝒥 = 𝜏 + 𝒥 and 𝜑(𝜋(𝐼2)) = 𝜓(𝜏) = −1 = (𝜓(𝐼))2 = 𝐢2

𝜋(𝐽2) = 𝐽2 + 𝒥 = 𝜏 + 𝒥 and 𝜑(𝜋(𝐽2)) = 𝜓(𝜏) = −1 = (𝜓(𝐽))2 = 𝐣2

𝜋(𝐼𝐽 + 𝐽𝐼) = 𝐼𝐽 + 𝐽𝐼 + 𝒥 = (1 + 𝜏)𝐽𝐼 + 𝒥 = 𝒥 and 

𝜑(𝜋(𝐼𝐽 + 𝐽𝐼)) = 𝜓(0) = 0 = 𝜓(𝐼)𝜓(𝐽) + 𝜓(𝐽)𝜓(𝐼) = 𝐢𝐣 + 𝐣𝐢

 

 

Hence, it has been verified that I + J, J + J fulfills the relations of the generators of the Clifford Algebra 𝐶𝑙0,2. Thus, 

𝐸[𝑄8]
𝐽⁄ ≅ 𝜓(𝐸[𝑄8])= ℍ ≅ 𝐶𝑙0,2, provided the central involution τ is mapped into −1. 

 

Example 2: Define an E − algebra map 𝜓: 𝐸[𝐷8] →  𝐶𝑙1,1 as follows, 

 

1 → 1, 𝜏 → 𝜎1𝛿 → 𝜎2, 
 

Where 𝐶𝑙1,1 spanned by the orthonormal elements 𝐶𝑙1,1 = {1, 𝜎1, 𝜎2, 𝜎1𝜎2} with multiplication relation, 𝜎1
2 = 1, 𝜎2

2 =
−1, 𝜎1𝜎2 = −𝜎2𝜎1. 

 

Let𝑢 𝜖 𝐸[𝐷8], then Ker 𝜓 = {∑  𝑔∈𝐷8
𝜆𝑔𝑔, : 𝜓(𝑢) = 0} = 𝐽 = (1 + 𝛿2) for central involution 𝛿2 = 𝑎2 ∈ 𝐷8 so that the 

dimEJ= 4 and 𝜓 is bijective [12]. 

 

Let 𝜋: 𝐸[𝐷8] →
𝐸[𝐷8]

𝐽⁄  be the natural map u → u + J then there exists an isomorphism, 𝜑:
𝐸[𝐷8]

𝐽⁄  → 𝐶𝑙1,1 such that 

𝜑𝑜 𝜋 =  𝜓 by first Isomorphism Theorem [4]. It is necessary to verify that 𝜏 + J, 𝛿 + J fulfill the relations of the generators 

of 𝐶𝑙1,1. 

 

𝜋(𝜏2) = 𝜏2 + 𝒥 = 1 + 𝒥 and 𝜑(𝜋(𝜏2)) = 𝜓(1) = (𝜓(𝜏))2 = 𝜎1
2 = 1

𝜋(𝛿2) = 𝛿2 + 𝒥 and 𝜑(𝜋(𝛿2)) = 𝜓(𝛿2) = 𝜓(−1) = 𝜎2
2 = −1

𝜋(𝜏𝛿 + 𝛿𝜏) = 𝜏𝛿 + 𝛿𝜏 + 𝒥 = 𝛿𝜏(1 + 𝛿2) + 𝒥 = 𝒥 and 

𝜑(𝜋(𝛿𝜏 + 𝜏𝛿)) = 𝜓(𝜏)𝜓(𝛿) + 𝜓(𝛿)𝜓(𝜏) = 𝜓(0) = 𝜎1𝜎2 + 𝜎2𝜎1 = 0

 

 

Hence, it has been verified that 𝜏 + J, 𝛿 + Jfulfills the relations of the generators of the Clifford Algebra 𝐶𝑙1,1. 

Thus,
𝐸[𝐷8]

𝐽⁄ ≅ 𝐶𝑙1,1 provided the central involution 𝛿2 is mapped into −1. 
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Example 3: Anne Marie Walley extended Vladimir M. Chernov’s construction to 𝐶𝑙2,0 and represented it as
𝐸[𝐷8]

𝐽⁄  as shown 

in the following example. 

Define an E − algebra map: 𝜓: 𝐸[𝐷8] →  𝐶𝑙2,0 as follows, 

 

1 → 1, 𝜏 → 𝜎1𝛿 → 𝜎1𝜎2, 
 

Where 𝐶𝑙2,0 spanned by the orthonormal elements 𝐶𝑙2,0  = {1, 𝜎1, 𝜎2, 𝜎1𝜎2} with multiplication relation, 𝜎1
2 = 1, 𝜎2

2 =
1, 𝜎1𝜎2 = −𝜎2𝜎1. The further steps are same as in above examples, but here τ + J, δτ + J fulfills the relation of generator of 

𝐶𝑙2,0 for further details refer [12, 13]. Therefore 
𝐸[𝐷8]

𝐽⁄ ≅ 𝐶𝑙2,0 provided the central involution 𝛿2 is mapped into −1. 

 

Let us summarize the above three examples for the Chernov’s Theorem with it’s reformulated as follows.  

1. The quaternion group 𝑄8: 

 

𝑄8 = {𝜏𝛾0𝑔1
𝛾1𝑔2

𝛾2: 𝛾𝑘 ∈ {0,1}, 𝑘 = 0,1,2} 

 

Where 𝑔1 = 𝑎, 𝑔2 = 𝑏, 𝜏 = 𝑎2is central involution in 𝑄8. Thus 

 

𝑔1
2 = 𝑎2 = 𝜏, 𝑔2

2 = 𝑏2 = 𝑎2 = 𝜏, 𝜏𝑔1𝑔2 = 𝑔2𝑔1 
 

Note that the order of elements, |𝑔1|=|𝑔2|=4 and 
𝐸[𝑄8]

𝐽⁄ ≅ 𝐶𝑙0,2 where J = (1 + τ) 

 

2. The quaternion group 𝐷8: 

𝐷8 = {𝜏𝛾0𝑔1
𝛾1𝑔2

𝛾2 : 𝛾𝑘 ∈ {0,1}, 𝑘 = 0,1,2} 

 

Where 𝑔1 = 𝑏, 𝑔2 = 𝑎, 𝜏 = 𝑎2is central involution in 𝐷8. Thus, 

𝑔1
2 = 𝑏2 = 1, 𝑔2

2 = 𝑎2 = 𝜏, 𝜏𝑔1𝑔2 = 𝑔2𝑔1 

 

Note that the order of elements, |𝑔1|=2, |𝑔2|=4 and  
𝐸[𝐷8]

𝐽⁄ ≅ 𝐶𝑙1,1 where J = (1 + τ). 

 

Theorem: Let 𝐶𝑙(𝑝,𝑞) be the universal Clifford Algebra defined as in 1.1 and let G be the finite 2−group of order 21+𝑛 

generated by a central involution τ and additional elements 𝑔1, 𝑔2, 𝑔3 … . 𝑔𝑛which satisfy the following relations [14,15]: 

 

𝜏2 = 1, (𝑔1)2 = (𝑔2)2 = ⋯ = (𝑔𝑝)
2

, (𝑔𝑝+1)
2

= (𝑔𝑝+2)
2

= ⋯ = (𝑔𝑝+𝑞)
2

𝜏𝑔𝑖 = 𝑔𝑖𝜏, 𝑔𝑖𝑔𝑗 = 𝜏𝑔𝑗𝑔𝑖 , 𝑖, 𝑗 = 1,2, … 𝑛 = 𝑝 + 𝑞
 

 

So that G={𝜏𝛾0𝑔1
𝛾1𝑔2

𝛾2 … . . 𝑔2
𝛾𝑛 : 𝛾𝑘 ∈ {0,1}, 𝑘 = 0,1,2 … . . 𝑛}. et J = (1 + τ) be an ideal in the group algebra E[G], then 

 

 dimEJ= 2𝑛 

 Here exists a surjective E − algebra homomorphism 𝜓: 𝐸[𝐺] →  𝐶𝑙𝑝,q with the ker 𝜓 = J. 

 

4. Salingaros Vee Group 

 

A finite group can be used to describe the Clifford Algebra structure in a vary elegant way. Let 𝐺(𝑝,𝑞) be a finite group in any 

real Clifford Algebra 𝐶𝑙𝑝,q,where a binary operation is just the Cifford Algebra product and the basis elements of Clifford 

Algebra 𝐶𝑙𝑝,q form a finite group of order 21+𝑝+𝑞. Such that 

 

𝐺𝑝,𝑞 = {±1, ±𝜎𝑖 , ±𝜎𝑖𝜎𝑗 , ±𝜎𝑖𝜎𝑗𝜎𝑘, … ± 𝜎1𝜎2𝜎3 … 𝜎𝑛} where 𝑛 = 𝑝 + 𝑞 

 

𝐺𝑝,𝑞 may also represented as follows, 

 

𝐺𝑝,𝑞 = ⟨−1, 𝜎1, … , 𝜎𝑛|𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖  for 𝑖 ≠ 𝑗 and 𝜎𝑖
2 = ±1⟩ 

 

Where 𝜎𝑖
2 = 1 for 1 ≤ 𝑖 ≤ 𝑝 and 𝜎𝑖

2 = −1 for 𝑝 + 1 ≤ 𝑖 ≤ 𝑛 = 𝑝 + 𝑞 and the elements 𝜎𝑖−
= 𝜎𝑖1

𝜎𝑖2
… … 𝜎𝑖𝑘

 will be 

simplified as 𝜎𝑖1𝑖2𝑖3……..𝑖𝑘
 for 1 ≤ 𝑘 while 𝜎0 will be denoted as 1, the identity element of 𝐺𝑝,𝑞(and 𝐶𝑙𝑝,q). 
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This 2-group of order 21+𝑝+𝑞  is called Salingarosvee group. Salingaros categorized this group into five isomorphic classes 

𝑁2𝑘−1, 𝑁2𝑘, Ω2𝑘−1, Ω2𝑘  and 𝑆𝑘 which are non-isomorphic to each other [9, 10, 11]. 

 

 

 

5. Algebraic Structure of Salingaros Vee Group 

5.1 Vee group corresponding to Clifford algebra 𝑪𝒍𝟎,𝟎 

 

Now let’s look at a few of the groups’ most basic instances. Initially, a finite Vee group that is associated with the Clifford 

algebra 𝐶𝑙0,0with an arbitrary element 𝒜 = 𝑎0 and division ring 𝕂 ≈ 𝐸(𝑝 − 𝑞 ≡ 0 𝑚𝑜𝑑(8)) is cyclic group 𝕫 = {1,1} with 

the following multiplication table: 

 1 -1 

1 1 -1 

-1 -1 1 

 

It is simple to observe that the finite group that corresponds to Clifford algebra 𝐶𝑙0,0 according to Vee group is 𝑁0− group 

(𝑁0 = 𝕫) 

 

5.2 Vee group corresponding to Clifford algebra 𝑪𝒍𝟏,𝟎 

 

Let us take an element of Clifford Algebra𝐶𝑙1,0= 𝒜 = 𝑎0 + 𝑎0𝜎1, where 𝜎1
2 = 1, 𝕂 ≈ 𝐸 ⊕ 𝐸, (𝑝 − 𝑞 ≡ 1 𝑚𝑜𝑑(8)). In this 

case the basis elements of 𝐶𝑙1,0 form the Gauss–Klein four–group 𝕫 ⊕ 𝕫 = {1, −1, 𝜎1,-𝜎1}. The multiplication of the 𝕫 ⊕
𝕫 is as follows. 

 

 1 -1 σ1 -σ1 

1 1 -1 σ1 -σ1 

-1 -1 1 −σ1 σ1 

σ1 σ1 -σ1 1 -1 

−σ1 −σ1 σ1 -1 1 

 

Let Ω𝑘 = 𝑁𝑘 ⊗ ℤ2. we have here first Ω group:Ω0 = 𝑁0 ⊗ ℤ2 = 𝑁0 ⊗ 𝑁0 = ℤ2 ⊗ ℤ2. 

 

5.3 Vee group corresponding to Clifford algebra 𝑪𝒍𝟎,𝟏 

 

Let us take an element of Clifford Algebra𝐶𝑙0,1= 𝒜 = 𝑎0 + 𝑎0𝜎1, where 𝜎1
2 = −1, 𝕂 ≈ ℂ, (𝑝 − 𝑞 ≡ 1 𝑚𝑜𝑑(8)) 

corresponds to the complex group 𝕫 ⊕ 𝕫 = {1, −1, 𝜎1,-𝜎1} with the multiplication table: 

 

 1 -1 σ1 -σ1 

1 1 -1 σ1 -σ1 

-1 -1 1 −σ1 σ1 

σ1 σ1 -σ1 -1 1 

−σ1 −σ1 σ1 1 -1 

 

It is evident that this group is classified by Salingaros as a first S − group such that S0 = ℤ4. 

Furthermore, we can construct the Vee group corresponding to Clifford Algebra for 𝐶𝑙0,2, and Clifford Algebra for 𝐶𝑙2,0. 

From these tables we get the Salingaros Vee group of 𝑁𝑜𝑑𝑑 , 𝑁𝑒𝑣𝑒𝑛 , Ω𝑜𝑑𝑑 , Ω𝑒𝑣𝑒𝑛  and 𝑆𝑘 groups. 

 

6. Conclusion 
 

Salingaros has noted that these groupings are members of five non-isomorphic families. However, one is aware that there 

are five distinct families into which all Clifford algebras 𝐶𝑙𝑝,q may be divided as simple and semisimple algebras depending 

on the values of (p, q) and p + q (the Periodicity of Eight).Through Chernov’s insight, another relationship with finite 

Salingaros groups emerges that the algebras 𝐶𝑙𝑝,q can be viewed as images of group algebra, we will look over this later 

research. 

 

Now we can see that from the multiplication tables. The odd N − groups correspond to real spinors, for example, 𝑁1 is 

connected to real 2– spinors, and 𝑁3 is the group of the real Majorana matrices. The even N − groups defines the quaternionic 

groups. Similarly, the S –groups are the ‘spinor groups, like 𝑆1 is the group of the complex Pauli matrices, and 𝑆2 is the group 
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of the Dirac matrices. Furthermore, the Ω– groups are double copies of the N – groups and can be written as a direct product 

of the N − groups with the group of two elements ℤ2: Ω𝑘 = 𝑁𝑘 ⊗ ℤ2. 
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