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Abstract 

Load scheduling defines the process of offering, assigning and balancing the load (tasks/ cloudlets to the virtual 

machines) in the cloud system effectively. The major intention is to minimize the transfer time and the total cost incurs in 

the load scheduling of the system. The traditional load scheduling techniques necessitate massive amount of resources 

and mechanisms, which are dynamic in processing, thereby increases the response time, waiting time and the total 

computation cost. This paper presents an efficient load scheduling technique called hybridization of binary tree 

optimization with Gravitational Search Algorithm (BTO-GSA) algorithm to minimize the computation time. The total 

computation time cost comprises of execution cost and transferring cost. It operates on hybrid Splitting Point Selection 

technique based GSA to search the optimal positions of the particles in the search space. The use of BTO algorithm 

depends upon the mathematical tree subject and enhances the outcome and searching speed by continuously eliminates 

the portions of the search space with minimum fitness for minimizing and purifying the search space. The BTO-GSA 

model has been implemented using CloudSim simulator and a detailed comparative result takes place under several 

aspects. The simulation outcome indicated that the BTO-GSA algorithm has offered superior performance over the 

compared methods in a significant way. 

Keywords: Binary tree optimization, CloudSim, Cloud computing, Load scheduling, Swarm intelligence 

1. Introduction 

Nowadays, Cloud Computing (CC) has been developed rapidly in the field of distributed and grid computing by applying 

virtualization models. Here, the term computing means the functions which are executed in the virtual machines (VM) of 

a system in order to enhance the working function of a device. CC used here is treated as a repository of the resources 

that enables the individuals with massive potential as well as processing facilities such as memory, processing, 

extraction, and information retrieval about the heterogeneous operations to provide best resources for the users. CC is 

relied on pay-as-you-go or pay-as-you-use method for the resources consumption. The CC offers resources, task 

scalability, timely resource implementation, dynamic maintenance, fault tolerance and interoperability of resources. Also, 

it is helpful in allocating the tasks to VMs in a dynamic manner. This dynamic allocation can be attained using load 

scheduling process in an optimal fashion. Hence, it is mainly computed to accomplish maximum throughput, minimum 

implementation and waiting time, lower transfer time, as well as least computational cost. 

Load scheduling is mainly applied to perform of the operations like task allocation, providing and management of load or 

tasks to the VM in the cloud effectively. The major aim of this model is to limit the transferring duration as well as the 

overall cost involved in the load scheduling system. This action has been processed under the application of diverse 

scheduling methods. These scheduling models are used accordingly to the static and dynamic techniques. Furthermore, it 

is divided into heuristic and non-heuristic methodologies. The meta-heuristic approach is a mandatory objective while 

performing the load scheduling process with the help of search framework. [1] expanded the problem solving technique 

with massive objectives of the cloud. It offers the conclusion for the applied problem by employing optimization criteria. 

It depends upon the SI models, which simulates the real nature of the swarms. The collection of objects, particles, ants 

and so forth follows the approach of placing the food that is applied for food discovery or optimal solution. The 

allocation of load in a cloud is one of the major complexities which have to be solved by applying effective models 

instead of using previous methods like Segmented Min-Min, Tabu Search, Simulated Annealing (SA), Genetic 

Algorithm (GA), particle swarm optimization (PSO), and so on. [2,22-30]. 

[3] pointed that the structure of cloud withstands 2 modules like Deployment model and Service model as shown in Fig. 

1. Initially, deployment model states the location of resource maintenance with the organized architecture. Also, clouds 

are differentiated on the basis of metrics as Private, Public, Community and Hybrid Cloud. Secondly, service model 

defined the class of available resources for the people. Software as a Service (SaaS) is the application which can be 

applied by standard interfaces, Platform as a Service (PaaS) is defined as the task and deploying environments. At last, 
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Infrastructure as a Service (IaaS) is the infrastructure relied resources like memory space, networking ability and 

computational power.  

 

Fig. 1. Service and Deployment Models of CC 

There are several benefits offered in these models like location independence, minimum cost and advertising time, 

extensive network access, resilient computing, maximum computation power, virtualization, flexible and scalable 

workout potentials as presented by Chaudhary et al. [4]. These operations applied maximum number of resources to 

resolve the computational difficulty, cost, transfer time and response time. It is useful in the dynamic resources allocation 

for diverse heterogeneous tasks at various locations. The load scheduling has to allocate the load on the basis of heavily 

loaded VM to minimum loaded VM. Yu et al. [5] offered the workflow based scheduling models across the nodes 

present in a grid. It depends upon the process workflow of nodes which might be varied.  

A swarm based scheduling is relied on the PSO approach [6] has been proposed in grid computing. The PSO applies the 

behavior of flock of birds to migrate from one node to other. The PSO approach applies the resources in an optimal 

manner. The meta-heuristic specifies a high level heuristic to find, produce, or select a heuristic approach with 

inaccuracy and partial data to offer the good solution for the issue. Tsai et al. [7] extended diverse metaheuristic 

scheduling models in the cloud. The investigation of load scheduling techniques is presented by Chaudhary et al. [8]. The 

SI relied frameworks offers maximum efficiency in scheduling when compared with alternate models of cloud. The 

swarm defines a collection of particles in the search space. Pacini et al. [9] implied a brief examination of swarm based 

techniques like ants, bees or birds for identifying the upcoming best position according to the models used to find the 

food. It provides higher utilization of resources. Additionally, meta-heuristic algorithm is extended under the application 

in structural optimization by Yildiz et al. [10]. The strength and scalability of discovering the future particle in 

optimization frameworks depends upon the meta-heuristic swarm based principles [11].  

Garg et al. [12] defined the network based potentials to perform the load scheduling in the cloud system. Kennedy et al. 

[13] projected a PSO algorithm in an arithmetic content. It has been evolved from the nature of flock of birds in order to 

place the food source. This optimization models tends to exploit the resources with minimum computation cost. 

Tasgetiren et al. [14] employed this optimization method in flow shop scheduling to control the cloudlets in an effective 

manner and managing stability for reactive power as well as management of the voltage. Such strategies schedule the 

load correctly, however with expensive computation. The PSO scheduling has been utilized on the grids which depend 

upon the enhanced fitness measures as well as applied attributes in [15]. The fuzzy sets were also deployed to estimate 

the functions applied to perform the scheduling task. Kang et al. [16] pointed out that the discrete PSO technology offers 

resource allocation in heterogeneous platforms. It is based on the application of diverse operations; therefore, the 

difficulty of the model is maximum processing and minimum node exploitation. Pandey et al. [17] devised the PSO in 

workflow scheduling in CC. The tasks were allocated on VM according to the position of particles. The expense of 

computation has been minimized but application of the resources is not so optimal. In order to enhance the resource 

utilization at cheaper rate Kumar et al. [18] applied the improved PSO (IMPSO) method in CC platform. 

This paper introduces a new load scheduling algorithm known as hybridization of binary tree optimization with 

Gravitational Search Algorithm (BTO-GSA) to lessen the computation time, which includes the execution cost and 

transferring cost. It operates on hybrid Splitting Point Selection technique based GSA for the identification of optimum 

positions of the particles in the search space. The application of BTO algorithm depends upon the mathematical tree 

subject, improvises the outcome and searching speed by incessantly eliminates the portions of the search space with 



JOURNAL OF CRITICAL REVIEWS 
ISSN- 2394-5125                             VOL 7, ISSUE 13, 2020 

 

2102 

 

minimum fitness for minimizing and purifying the search space. The BTO-GSA model has been implemented using 

CloudSim simulator and the results are examined under several aspects. 

2. The Proposed BTO-GSA Algorithm 

The BTO-GSA algorithm is mainly focused on reducing the overall computational cost and allocates the cloudlets (load 

or task) to VM effectively. The computational cost is comprised with transfer and execution cost of the loads. The BTO-

GSA model accomplishes maximum search space application as well as user convenience when compared with previous 

technologies. It depends upon bio-inspired SI algorithm, scientific and law of gravitation heuristic in CC. BTO-GSA is 

defined as the memory-driven techniques that save the optimal position value of particles that resolves the issues of 

classical GSA. The consecutive particle can be estimated on the basis of GA and GSA. It comprises a fitness function 

(FF) computation, Splitting Point Selection, new-gravitational constant function, new cost determination function, 

memory-relied velocity and position estimation. The cloudlets and VM metrics such as MIPS, bandwidth, 

implementation cost, and transferring cost were applied for the FF estimation. The flowchart of the BTO-GSA algorithm 

is depicted in Fig. 2. 

In the CC platform, it performs the task of load allocation on VM. The data center gets (VMs)Cloudlets possibilities of 

implementing the cloudlets on the corresponding VM. When 3 loads are performed on 2 VMs, then the possibility is (2)3 

that is 8.The M particles are described in d dimensional search space which has a maximum number of feasible solutions. 

Hence, a meta-heuristic algorithm is essential in Newton’s law of gravitation in order to identify the particle's positions. 

Thus, the better solution for the cloudlets can be found under effective allocation of particles on the basis of BTO-GSA 

scheduling principle. This model offers the optimal position to the load in order to implement on VM. The particles M 

have been initiated with the application of CloudSim tool as given below: Mi = (mi1, mi2, …… ,min, ……… ,mid) ∀𝑖 = 1 𝑡𝑜 25 𝑎𝑛𝑑 𝑛 = 1 𝑡𝑜 10                                                (1) 
The FF module is used to estimate the fitness value of the particles present in the searching space. The initial particle is 

applied in a random manner in the search space after selecting the future particle according to the best FF values. It is 

based on the bandwidth, MIPS, implementation cost as well as transfer cost of loads and VMs. Suppose Ctexec(M)j is the 

overall execution cost of particles assigned to estimate the VM resource PCj. It is evaluated by the addition of weights 

allocated on the nodes and implementation cost of cloudlets k is measured on VM resource PCj under the mapping of 

particles M of each cloudlet that is assigned for all resources. 

 

Fig. 2. Flowchart of Proposed BTO-GSA  
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Assume Cttrans(M)j is the total transfer cost among cloudlets which are declared to estimate VM resource PCj and few of 

them were not assigned in the mapping M. Consequently, the product of resultant size el1,l2 by means of 1 particle l1 ∈ k 

to task l2 ∈ l and the expense of transmission between the source in which l1 is mapped (M(l1)) to alternate resources 

where l2 is mapped (M(l2)). The maximum cost of data communication among 2 resources is depicted as dM(l1),M(l2) 
and these particles are reliant to one another. Here, more than 2 particles were executed on the similar resource, and 

communication cost becomes 0. Hence, the overall cost is summarized for all particles M with the application of 

execution as well as transfer cost and it is limited to compute the FF measures. Thus, the FF module is expressed as,  

Ctexec(M)j =∑ωlj 
l , ∀M (l) = 𝑗                                           (2) 

crtrans(M)j = ∑ ∑ dM(l1),M(l2) ∗ el1,l2 
l2∈T

 
l1∈T                           (3) 

∀M(k1) = 𝑗 𝑎𝑛𝑑 M(l2) ≠ j                                                      (4) Cttotal(M)j = Ctexec(M)j + Cttrans(M)j                                        (5) CostTotal(M) =  max (cttotal(M)j), ∀j∈ M                                      (6) Minimize(Costtotal(M), ∀M)                                                           (7) 
2.1. Binary Tree Optimization algorithm 

The FF of every particle is created using the above-mentioned equations. The BTO algorithm is applied achieve effective 

search space exploitation. Tree optimization algorithm [19] utilizes a tree for reducing the landscape of search (i.e., 

search space) for improvising the effectiveness and searching speed. The removal process depends upon the 

identification and elimination of bad regions of landscape which have low fitness over other regions with improved 

fitness. It results to small search space and make the searching process easier as well as precise. It converges to a region 

of search space that is adequate for searching it precisely and possibly the preferable solution to the optimization issue. 

BTO algorithm applies a binary tree to divide the area of search space. A binary tree is defined as a tree in which all 

nodes are classified into 2 edges. Binary TBO technique is composed with diverse parts as defined in the following. 

 Vertical & Horizontal Split: The initial landscape is classified into 2 regions, namely, vertical and horizontal. This 

selection could be interchanged among vertical and horizontal choices, that is equated as: 

𝑆𝑝𝑙𝑖𝑡 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = {𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑖𝑓 𝑤𝑎𝑠 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙,𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑖𝑓 𝑤𝑎𝑠 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙.                          (8) 
An alternate model for this procedure is to select the vertical or horizontal split with a probability 𝑝(𝑒. 𝑔. , 𝑝 = 0.5): 

𝑆𝑝𝑙𝑖𝑡 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = {𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑖𝑓 𝑟 ∈ [0, 𝑝],𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑖𝑓 𝑟 ∈ [𝑝, 1],                                 (9) 
where 𝑟 implies the uniform arbitrary value from the range ⌊0,1⌋, where 𝑟 ∼ 𝑈(0,1) . 
The BTO technique could be expanded for search space with maximum dimensions. For high-dimensional search spaces, 

a division has to be processed in single dimension and upcoming iteration applies other dimension to perform the 

splitting task. 

 Splitting Point Selection: After selecting the orientation of split, the splitting point is present in the respective area. 

The randomly selected feasible points from the region is applied to select the point within a specific range, that is 

moderately away from edges of residual region, and eliminate the splitting in larger and smaller regions. The  residual 

region is used to split [𝑅1; 𝑅2], and: 𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 ← 𝑈(𝐿1, 𝐿2) ,                                               (10) 
where 𝐿1 = (30% × (𝑅2 − 𝑅1)) + 𝑅1 and 𝐿2 = (70% × (𝑅2 − 𝑅1)) + 𝑅1.  
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The values 30% and 70% are hyper-parameters, and 𝑈(𝛼, 𝛽) implies the uniform random value from the range [𝛼, 𝛽]. 
 Update global best: Every meta-heuristic algorithm stores the best solution in memory. Once the 2 classified regions 

are identified, the results attained imply an optimal conclusion. When the optimal solutions performs quite-well than 

global best found, the finally saved global best would be swapped into that is formulated as : 

𝐺𝐵𝑖 = {𝐵𝑖 𝑖𝑓 𝐵𝑖 > 𝐺𝐵𝑖−1,𝐺𝐵𝑖−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                   (11) 
where 𝐵𝑖  refers to the optimal solutions of 2 regions in the i-th iteration and GB denotes the global best solution 

identified. 

 Enters into a Region with a Probability: This process can be assumed as the complexity of a model. Selecting a 

region for entering into is one of the significant processes as the alternate region would be eliminated from the search 

space that cannot be identified whenever required till the approach gets implemented. Initially, it is better to select an 

optimal conclusion. It is pointed that, the better solutions of regions might be considered as local solutions and it is far 

apart from the required global best. Besides, the global best is present in the region with poor solution and the sub-

algorithm is not present in the target region. In order to eliminate the problem, a probabilistic selection method has to be 

employed. Hence, probabilistic decision leads to additional issue. Once the decision method selects a region which is not 

the preferable global best, the algorithm then converges to an outlier or local solution. To resolve this issue, the execution 

of the algorithm gets repeated for several rounds to make sure about the solution. . Note that this re-running approach is 

common in metaheuristic algorithms because of their randomness manner and un-sureness.  

In order to compute the probabilistic decision, the problem type such as minimization or maximization is highly 

significant. Also, the main complexity is cost reduction, which requires lower function. At this point, a decision has been 

created: 

𝑃1 =
{   
   1 − 𝐵1𝐵1 + 𝐵2 𝑖𝑓 𝐵1 > 0&𝐵2 > 0,𝐵1𝐵1 + 𝐵2 𝑖𝑓 𝐵1 < 0&𝐵2 < 0,1 − 𝐵𝐵1𝐵𝐵1 + 𝐵𝐵2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                       (12) 

where 𝐵1 and 𝐵2 are the best solutions of regions 1 and 2. 𝑃1 implies the probability of getting into the region 1, where 𝐵𝐵1 and 𝐵𝐵2 can be represented by: 𝐵𝐵1 = 𝐵1 + | min (𝐵1, 𝐵2)| + 1, 𝐵𝐵2 = 𝐵2 + | min (𝐵1 , 𝐵2)| + 1,                                           (13) 
For making a simple and an easy implementation of this approach, the decision enters into the region as determined by: 

𝐸𝑛𝑡𝑒𝑟 𝑡𝑜 = {𝑅𝑒𝑔𝑖𝑜𝑛 1 𝑖𝑓 𝑟 < 𝑃1,𝑅𝑒𝑔𝑖𝑜𝑛 2 𝑖𝑓 𝑟 ≥ 𝑃1,                                                       (14) 
where 𝑟 shows a uniform arbitrary value such as, 𝑟 ∼ 𝑈(0,1). While entering into the target region, the alternate region is 

eliminated from a search space and boundaries of landscape are extended by: 

{𝑦 mn = 𝑆𝑃 𝑖𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑝𝑙𝑖𝑡, 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑢𝑝𝑦 mx = 𝑆𝑃 𝑖𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑝𝑙𝑖𝑡, 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑑𝑜𝑤𝑛𝑥 mn = 𝑆𝑃 𝑖𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑝𝑙𝑖𝑡, 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑟𝑖𝑔ℎ𝑡𝑥 mx = 𝑆𝑃 𝑖𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑝𝑙𝑖𝑡, 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑙𝑒𝑓𝑡                      (15) 
where SP is the splitting point. The process involved in the BTO algorithm is provided in Algorithm 1. 
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Algorithm I: Pseudo code of BTO algorithm 

Begin: Setting up parameter 

While termination criteria is unsatisfied do 

  α=Size of region/Iteration count 

If Number of Branches More then 

   For j from 1 to d do 

    For i from 1 to α do 

     splitting point randomly [L1, L2] 

End For 

End For 

  Else 

   Exchange split on proportions 

   For i from 1 to α do 

    splitting point randomly [L1, L2] 

End For 

End If 

If Best of iteration is superior to Global best then 

  Update Global best (i.e. Assign Global best ← Best of iteration) 

End If 

For all regions do 

  Compare best results in each region and set chance of entering the 

region 

End For 

Discard outer portion from search space 

End While 

If Execute again then 

 Goto Begin of process 

Else 

Return the Global best 

End If 

 

2.2. Process involved in GSA 

The FF values of a particle could be evaluated under the application of best (z) and worst (z) measures produce the mass Mati (active), Mpsi (passive) and Miti (inertia). fiti(z) are named as the fitness rates of the particle for each iteration, in 

which t implies the overall count of particles. Mati = Mpsi = Miti = Mi, i = 1,2,3, …… . , 𝑁                           (16) 
mi(z) = fιti(z) − worst(z)best(z) − worst(z)                                            (17) 
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Mi(z) = mi(z)∑ mjNj=1 (z)                                                   (18) 
The load scheduling is assumed to be the minimization issue, thus the fitness has been estimated on the basis of best (z) 

and worst (z) measures. 

best(z) =  min j ∈ {1, … . , N} fιtj(z)                                       (19) 
worst(z) = m𝔠 ↓ xj ∈ {1, … . , N} fitj(r)                                           (20) 

Where, j ∈ {1, … . , N} is the particle j from N particles. The gravitational constant G(z) acts as a force at a particular 

moment is described by particle's potential and applied to improve the movement among them. It is processed on the 

basis of G0 (initial value), β(global best fitness), pbestiz and time z. 
G(z) = G0e (β 1f(pbestiz) + 1                                         (21) β = f(gbesti)                                                           (22) 

The force on the particle is treated on the mass and Euclidean distance Rij(z) in d dimensional search space among the 

particles Mi and Mj. A static function randj belongs to the interval of [0,1]. Thus, the cumulative force which acts on a 

particle i corresponds to particle j at a particular instant t on the particles, as applied to identify the upcoming possible 

positions. 

Fijd(z) = G(t)Mpi(z) × Maj(z)Rij(z) + ε (xjd(z) − xid(z))                   (23) 
Rij(z) = ||Mi(z),Mj(z)||2                                                      (24) 

R(Mi, Mj) = R(Mj, Mi) = √ ∑ (N
i=1,j=1 Mj −Mi)2                                            (25) 

Fid(z) = ∑ randjNj=1,j≠i Fijd(z)                                               (26)  
did(z) = Fid(z)Miti(z)                                                               (27)  

The simulation of particle 𝑖 depends upon the force as well as inertial mass. The particle which has to be placed in the 

search space can be estimated with the application of velocity and particle. The velocity of subsequent round of a particle vi𝔞(z + 1) is determined by applying the arbitrary uniform function ω which exists from [0,1] along with velocity of a 

particle and acceleration. The arbitrary measures c1, c2 and r1, r2 with pbestiz and gbestz assists in exploring the 

optimization between the particles. The position of subsequent particle xid(z + 1) has chosen a particle position xid(z) 
and velocity vid(z + 1) of upcoming particle.  vid(z + 1) = ω × vid(z) + aid(z) + [c1. r1. (pbestiz − xid(z)) + c2. r2. (gbest𝑧 − xid(r))]  (28) xid(r + 1) = xid(r) + vid(z + 1)                                                       (29) 
The process is repeated till the maximum condition has been fulfilled. The global best position outcomes are provided to 

perform the load scheduling on VM in CloudSim simulator. Then, the cloudlets assigned to concern data centres. The 

overall computational cost is calculated under the application of parallel computing model. BTO-GSA limits the 

computation cost in the CC by offering efficient load scheduling of tasks. It makes use of maximum search space area 

and gives higher user satisfaction. This model provided higher application as well as minimum cost by using VMs. 
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3. Experimental Validation 

The BTO-GSA algorithm is intended to optimize cost while scheduling the loads to the data centres by the cloudlets and 

VMs. The proposed BTO-GSA algorithm is simulated using CloudSim tool. A set of methods used for comparison are 

PSO, Cloudy GSA and LIGSA-C techniques [20, 21]. A series of experimental analysis takes place under the existence 

of 10, 15 and 20 cloudlets. The execution of the algorithm is conducted in the iterations of 10 to 1000.  

3.1. Result analysis  

Table 1 and Fig. 3 have provided a detailed comparison of the results offered by BTO-GSA algorithm with other 

algorithms under varying number of iterations. The table values indicated that the Genetic-SA algorithm has offered 

ineffective results with the maximum transfer time over the compared methods. At the same time, the FCFS and Min-

Min method has offered slightly better performance over the Genetic-SA model, by offering slightly lower transfer time. 

Also, the PSO and C-GSA algorithms have tried to exhibit competitive results with the moderate transfer time. However, 

the BTO-GSA algorithm has resulted to a maximum transfer time over the compared methods under 1000 iterations.  

Table 1 Transfer Time Analysis of BTO-GSA algorithms over 1000 rounds 

Iterations Genetic-SA FCFS Min-Min PSO C-GSA BTO-GSA 

100 62000 58500 58200 54500 55000 54000 

200 60000 58500 58200 57000 51500 51000 

300 70500 58500 58200 51000 52250 51550 

400 62500 58500 58200 52500 48000 47000 

500 64200 58500 58200 53500 47000 46000 

600 59500 58500 58200 56800 38000 37800 

700 50500 58500 58200 50500 50000 48000 

800 55550 58500 58200 55500 55500 53000 

900 67000 58500 58200 52500 50100 50000 

1000 68000 58500 58200 56500 71550 56000 

For instance, under the iteration of 100, the BTO-GSA algorithm has attained lower transfer time with the minimal value 

of 54000 whereas the Genetic-SA algorithm has offered maximum transfer time of 62000. At the same time, the other 

existing methods such as FCFS, Min-Min, PSO and C-GSA algorithms have resulted to a low transfer time of 58500, 

58200, 54500 and 55000 respectively. Similarly, under the maximum iteration of 1000, the proposed BTO-GSA 

algorithm has exhibited lower transfer of 56000 whereas the C-GSA algorithm has achieved maximum transfer time of 

71550. Along with that, the other existing methods such as Genetic-SA, FCFS, Min-Min and PSO and C-GSA 

algorithms leads to a moderate transfer time of 62000, 58500, 58200 and 54500 respectively.  

 

Fig. 3. Transfer Time Analysis of BTO-GSA algorithm 
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Table 2 and Fig. 4 have depicted a brief comparison of results provided by BTO-GSA model with other algorithms under 

varying number of iterations. The table values pointed that the PSO algorithm has shown ineffective results with the 

higher cost for 10 cloudlets compared to other models. Simultaneously, the C-GSA and LIGSA-C methods have offered 

moderate performance over PSO model, by resulting to a lower cost for 10 cloudlets. In addition, the HG-GSA 

algorithms have attempted to showcase the results with considerable cost for 10 cloudlets. Therefore, the BTO-GSA 

algorithm has given a greater cost for 10 cloudlets over the other methods under 1000 iterations. For example, under the 

iteration of 10, the BTO-GSA technology has reached to a minimum cost for 10 cloudlets with the least value of 

19000.85 while the PSO algorithm has accomplished higher cost of 144670.35. Simultaneously, the other traditional 

approaches like C-GSA, LIGSA-C and HG-GSA methodologies have shown as somewhat manageable cost of 22033.56, 

27842.76 and 19307.62 correspondingly. Likewise, under the maximum iteration of 1000, the presented BTO-GSA 

algorithm has obtained lower cost for 10 cloudlets of 18990.90 and the PSO algorithm has attained best cost for 10 

cloudlets of 150183.34. In line with this, the other existing methods namely, C-GSA, LIGSA-C and HG-GSA models 

provides the acceptable cost for 10 cloudlets of 19879.76, 18100.89 and 19585.39 correspondingly.  

Table 2 Total Cost Analysis of 10 Cloudlets in Existing with Proposed Algorithms 

Iterations PSO C-GSA LIGSA-C HG-GSA BTO-GSA 

10 144670.35 22033.56 27842.76 19307.62 19000.85 

20 154718.39 22231.08 22364.73 22127.08 21900.03 

30 146023.00 22646.84 22364.73 20917.08 20250.80 

40 151117.03 25236.80 29819.64 16894.16 15980.10 

50 153934.60 21804.13 28550.08 19307.62 18870.25 

60 146671.56 28238.39 22977.63 19237.54 18920.24 

70 150630.78 24134.52 25685.22 18361.30 17950.00 

80 144320.10 27754.70 26092.18 19360.00 18760.28 

90 150043.44 28324.33 27754.70 19754.70 19200.65 

100 155538.95 29378.09 27309.16 19307.62 18900.10 

200 143757.94 22364.73 25289.42 18637.28 18200.17 

300 155469.76 26501.04 23337.08 20290.97 19600.50 

400 154534.97 27754.70 29023.44 19754.70 19300.35 

500 148303.41 22239.87 24134.52 18035.19 17800.63 

600 143482.75 22364.73 25410.00 18745.79 18126.60 

700 148181.19 33288.01 25229.59 19879.76 19270.56 

800 145980.43 26069.20 25705.82 19760.96 19150.45 

900 145713.85 19760.96 22927.79 20514.34 19580.15 

1000 150183.34 19879.76 18100.89 19585.39 18990.90 

 
Fig. 4. Cost Analysis of 10 Cloudlets of BTO-GSA algorithm 
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Table 3 and Fig. 5 have offered an extended comparison of the results exhibited by BTO-GSA algorithm with other 

methods under different number of iterations. The table values implied that the PSO algorithm has provided poor results 

with the higher cost for 15 cloudlets over the compared methods. Meanwhile, the C-GSA and LIGSA-C methodology 

has given reasonable performance when compared with PSO model, leads to a moderate cost for 15 cloudlets. 

Furthermore, the HG-GSA algorithm has shown results with the slightly lower cost over previous algorithms for 15 

cloudlets. Thus, the BTO-GSA algorithm has attained a greater cost for 15 cloudlets when compared with alternate 

techniques under 1000 iterations. For illustration, under the iteration of 10, the BTO-GSA model has accomplished a 

lower cost for 15 cloudlets with the least value of 27105.36 while the PSO algorithm has reached maximum cost for 15 

cloudlets of 251281.52. Concurrently, the conventional approaches like C-GSA, LIGSA-C and HG-GSA algorithms have 

obtained moderate cost of 37857.08, 32257.32 and 27754.70. On continuing with, under the iteration of 1000, the 

proposed BTO-GSA algorithm has defined to a minimum cost for 15 cloudlets of 25840.56 and the PSO algorithm has 

derived maximum cost for 15 cloudlets of 245697.97. In line with this, the previous techniques like C-GSA, LIGSA-C 

and HG-GSA algorithms have produced to a gradual cost for 15 cloudlets of 34995.05, 40039.80 and 27124.43 

respectively.  

Table 3 Cost Analysis of 15 Cloudlets in Existing with Proposed Algorithms 

Iterations PSO C-GSA LIGSA-C HG-GSA BTO-GSA 

10 251281.52 37857.08 32257.32 27754.70 27105.36 

20 248417.27 35963.57 28937.14 32304.61 31102.25 

30 248960.09 29040.00 28961.42 25341.25 21020.14 

40 247411.82 38166.08 38475.07 27754.70 21356.20 

50 249097.51 32648.05 33050.35 32053.00 31000.86 

60 252863.34 38681.68 36268.23 25341.25 24920.35 

70 233301.08 41898.99 36731.93 27567.72 27230.51 

80 240275.47 31897.65 35784.15 30058.65 28500.34 

90 238414.15 36863.29 30352.66 26451.61 25230.36 

100 246693.71 38786.14 31826.26 32027.90 31032.20 

200 257046.55 31383.81 37946.69 30390.74 28982.98 

300 241913.93 30846.27 36969.75 30421.03 29352.05 

400 250686.57 43246.33 38615.23 26682.65 21346.63 

500 255247.49 30421.03 34466.45 32676.34 29850.15 

600 255640.52 41051.12 38202.02 28961.42 25980.98 

700 240621.62 42062.43 32053.00 26547.97 25680.65 

800 234732.64 35731.24 31027.56 25705.82 22300.32 

900 245081.61 37408.51 38177.92 28961.42 26780.00 

1000 245697.97 34995.05 40039.80 27124.43 25840.56 

 

Fig. 5. Cost Analysis for 15 Cloudlets of BTO-GSA algorithm 
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Table 4 and Fig. 6 have depicted a detailed comparison of the results attained by BTO-GSA with other algorithms under 

several numbers of iterations. The table values denote that the PSO algorithm has provided worst results with the greater 

cost than alternate technologies. Meanwhile, the C-GSA and LIGSA-C methods have reached manageable outcome over 

the PSO model, by resulting to a slightly reduced cost for 20 cloudlets. In addition, the HG-GSA algorithms have 

attempted to implement the results with the reasonable cost for 20 cloudlets. However, the BTO-GSA algorithm has 

resulted to a higher cost for 20 cloudlets than the related methods under 1000 iterations. For example, under the iteration 

of 10, the BTO-GSA approach has accomplished to least cost of 35450.20 while the PSO algorithm has offered 

maximum cost of 368649.60. Simultaneously, the conventional methods such as C-GSA, LIGSA-C and HG-GSA 

algorithms have obtained a low cost for 20 cloudlets of 44876.48, 44087.03 and 36863.29 correspondingly. Likewise, 

under the maximum iteration of 1000, the projected BTO-GSA algorithm has implied lower cost for 20 cloudlets of 

35632.77 and the PSO algorithm has derived maximum cost for 20 cloudlets of 363249.97. On the same way, the 

previous models like C-GSA, LIGSA-C and HG-GSA algorithms provides manageable cost for 20 cloudlets of 52452.21, 

51730.62 and 36201.78 correspondingly.  

Table 4 Cost Analysis of 20 Cloudlets in Existing with Proposed Algorithms 

Iterations PSO C-GSA LIGSA-C HG-GSA BTO-GSA 

10 368649.60 44876.48 44087.03 36863.29 35450.20 

20 354478.05 41712.67 45876.72 37233.37 36560.12 

30 345540.58 46517.10 45524.08 40483.47 38450.65 

40 356553.37 44648.86 43818.19 38517.03 37620.35 

50 353046.85 50765.56 49868.66 34390.46 33160.42 

60 355353.89 47062.32 46108.80 41002.00 40562.32 

70 351187.75 44648.86 45980.00 41028.68 40250.79 

80 357996.22 36958.02 42285.25 36604.12 35120.52 

90 371324.59 47707.21 39759.52 37341.23 35940.11 

100 368448.35 43551.33 42368.31 38615.23 37462.36 

200 359849.89 48400.00 35498.52 34390.46 33280.12 

300 347655.15 44876.48 42082.11 39821.96 38502.32 

400 350307.00 44648.86 46404.60 32027.90 31089.85 

500 365131.36 39521.91 45492.86 40855.59 39580.37 

600 366225.26 51872.51 39434.34 44085.78 43250.12 

700 369217.78 47914.30 39521.91 41690.19 40980.85 

800 366704.32 42284.40 46171.69 34390.46 33890.75 

900 362957.68 47195.22 50498.53 41028.68 40089.65 

1000 363249.97 52452.21 51730.62 36201.78 35632.77 

 

Fig. 6. Cost Analysis of 20 Cloudlets of BTO-GSA algorithm 
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Table 5 and Fig. 7 showcase a detailed comparison of the results accomplished by BTO-GSA algorithm with alternate 

algorithms under numerous numbers of iterations. The table values represented that the PSO algorithm has provided 

worst results with the higher distance cost for 20 cloudlets than the compared methods. Concurrently, the C-GSA and 

LIGSA-C methods have reached slightly better results over the PSO model, by offering a slightly minimum distance cost 

for 20 cloudlets. Additionally, the HG-GSA algorithms have attempted to display results with the considerable distance 

cost for 20 cloudlets. But, the BTO-GSA algorithm has derived a least distance cost for 20 cloudlets than the methods 

under 19 iterations. For example, under the iteration of 1, the BTO-GSA, PSO, C-GSA, LIGSA-C and HG-GSA 

frameworks has accomplished cost for 20 cloudlets with the value of 0. Likewise, under the maximum iteration of 19, the 

deployed BTO-GSA algorithm has signified least distance cost of 470 while the PSO algorithm has attained maximum 

distance cost of 1550. In line with this, the other methods like C-GSA, LIGSA-C and HG-GSA algorithms tends to 

generate reasonable distance cost of 1540, 1100 and 600 respectively.  

Table 5 Mean of Normalized Distance (Total Cost) for 20 Cloudlets 

Data Vector  PSO C-GSA LIGSA-C HG-GSA BTO-GSA 

1 0 0 0 0 0 

2 10000 200 5400 2800 2000 

3 5200 300 3000 1750 1700 

4 3700 1300 3000 1900 1300 

5 3200 1000 2500 1700 1750 

6 2800 1700 2100 1600 1480 

7 2200 1600 1900 1200 1050 

8 2100 1650 1700 1000 750 

9 1990 1700 1650 900 660 

10 1990 1650 1600 900 600 

11 1990 1600 1550 850 800 

12 1980 1580 1550 820 780 

13 1900 1570 1550 800 700 

14 1800 1530 1500 780 670 

15 1800 1480 1450 700 600 

16 1700 1550 1200 680 560 

17 1650 1520 1100 660 500 

18 1600 1530 1000 630 480 

19 1550 1540 1100 600 470 

 

 

Fig. 7. Mean of Normalized Distance of BTO-GSA algorithm 
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Table 6 and Fig. 8 depict a brief comparison of the results accomplished by BTO-GSA algorithm with other models 

under diverse number of iterations. The table values show that the PSO algorithm has given poor results with the 

maximum displacement cost for 20 cloudlets over the other methods. Simultaneously, the C-GSA and LIGSA-C methods 

have afforded better performance than the PSO model with a minimum displacement cost for 20 cloudlets. Moreover, the 

HG-GSA algorithms have attempted to exhibit moderate results with the considerable displacement cost for 20 cloudlets. 

Thus, the BTO-GSA algorithm has achieved superior displacement cost for 20 cloudlets over existing methods under 19 

iterations. For sample, under the iteration of 1, the BTO-GSA algorithm has accomplished least displacement cost for 20 

cloudlets with the low value of 33000 and the PSO algorithm has provided maximum displacement cost for 20 cloudlets 

of 350000. Concurrently, the other methods like C-GSA, LIGSA-C and HG-GSA models have attained as minimum 

displacement cost for 20 cloudlets of 45000, 44900 and 37000 correspondingly.  

Table 6 Mean of Normalized Displacement (Total cost) for 20 Cloudlets 

Data Vector  PSO C-GSA LIGSA-C HG-GSA BTO-GSA 

1 350000 45000 44900 37000 33000 

2 256000 30500 33000 26000 22000 

3 200000 25500 26000 22000 20000 

4 158000 22500 22600 19000 16000 

5 152000 20500 20500 17000 13000 

6 145000 18000 18000 15100 12000 

7 142000 17500 17500 14950 11500 

8 136000 16000 16100 14000 12500 

9 130000 15000 15000 13000 10000 

10 125000 14800 14800 12250 9900 

11 120000 14000 13950 11500 8300 

12 110500 13000 12950 11000 7500 

13 105000 12500 12450 10500 7500 

14 100000 12000 12000 10000 6000 

15 98000 11500 11400 10000 5900 

16 95000 11000 10800 9950 5500 

17 87000 10800 10700 9900 4400 

18 84000 10500 10300 9850 4300 

19 80000 10100 10050 9800 4200 

 

Fig. 8 Mean of Normalized Displacement of BTO-GSA algorithm 
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Along with that, under the maximum iteration of 19, the developed BTO-GSA algorithm has shown displacement of 

lower cost of 4200 whereas the PSO algorithm has reached best displacement cost of 80000. Similarly, the previous 

techniques namely, C-GSA, LIGSA-C and HG-GSA algorithms leads to a manageable displacement cost of 10100, 

10050 and 9800 respectively. 

Table 7 and Fig. 9 show the statistical analysis of the total cost under diverse number of cloudlets. Fig. 9a implies the 

statistical analysis of the total cost of cloudlets with respect to mean. Under the existence of 10 cloudlets, the BTO-GSA 

algorithm has accomplished minimum total cost with the lower value of 18934.40 while the PSO model has given higher 

total cost of cloudlets of 149119.78. Meanwhile, the previous models like C-GSA, LIGSA-C and HG-GSA algorithms 

have exhibited high total cost of cloudlets of 24842.39, 25258.91 and 19462.06 correspondingly. Concurrently, under the 

presence of 15 cloudlets, the BTO-GSA algorithm has reached lower total cost of cloudlets with the minimal value of 

26558.57 and the PSO algorithm has showcased greater total cost of cloudlets of 246493.94. Meanwhile, the other 

existing approaches like C-GSA, LIGSA-C and HG-GSA algorithms have depicted a high total cost of cloudlets of 

36260.44, 34744.37 and 28638.27 correspondingly. Likewise, under the presence of 20 cloudlets, the presented BTO-

GSA algorithm has implied total cost of cloudlets of 37203.93 while the PSO algorithm has attained higher total cost of 

cloudlets of 359677.77. In line with this, the other existing methods namely, C-GSA, LIGSA-C and HG-GSA 

technologies results in considerable total cost of cloudlets of 45663.91, 44342.72 and 38240.61 correspondingly.  

 

Fig. 9. Statistical Results Analysis of BTO-GSA algorithm a) Mean b) Minimum c) Maximum 
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Table 7 Statistical results analysis of BTO-GSA algorithm 

Parameter 
No. of 

Cloudlets 
PSO C-GSA LGSA-C HG-GSA BTO-GSA 

Mean 

10 149119.78 24842.39 25258.91 19462.06 18934.40 

15 246493.94 36260.44 34744.37 28638.27 26558.57 

20 359677.77 45663.91 44342.72 38240.61 37203.93 

Minimum 

10 143482.75 19760.96 18100.89 16894.16 15980.10 

15 233301.08 29040.00 28937.14 25341.25 21020.14 

20 345540.58 36958.02 35498.52 32027.90 31089.85 

Maximum 

10 155538.95 33288.01 29819.64 22127.08 21900.03 

15 257046.55 43246.33 40039.80 32676.34 31102.25 

20 371324.59 52452.21 51730.62 44085.78 43250.12 

 

Fig. 9b signifies the statistical investigation of the total cost of the cloudlets interms of Minimum. Under the iteration of 

10, the BTO-GSA method has reached minimum total cost of cloudlets with the least value of 15980.10 while the PSO 

algorithm has attained maximum total cost of cloudlets of 143482.75. Meanwhile, the other existing schemes like C-

GSA, LIGSA-C and HG-GSA models have achieved a moderate total cost of cloudlets of 19760.96, 18100.89 and 

16894.16 correspondingly. Meanwhile, under the iteration of 15, the BTO-GSA approaches has accomplished a lower 

total cost of cloudlets with the least value of 21020.14 and the PSO algorithm has shown good total cost of cloudlets of 

233301.08. Likewise, the other previous technologies like C-GSA, LIGSA-C and HG-GSA algorithms have attained 

minimum total cost of cloudlets of 29040.00, 28937.14 and 25341.25 correspondingly. In line with this, under the 

maximum iteration of 20, the projected BTO-GSA algorithm has attained total cost of 31089.85 and the PSO algorithm 

has reached to a higher total cost of cloudlets of 345540.58. On the same way, the other existing algorithms like C-GSA, 

LIGSA-C and HG-GSA algorithms resulted in a high total cost of cloudlets of 36958.02, 35498.52 and 32027.90 

correspondingly.  

Fig. 9c illustrates the statistical examination of the total cost of the cloudlets with respect to maximum. Under the 

iteration of 10, the BTO-GSA algorithm has accomplished a minimum total cost of cloudlets with the least value of 

21900.03 and the PSO algorithm has provided maximum total cost of 155538.95. Concurrently, the classical methods 

like C-GSA, LIGSA-C and HG-GSA algorithms have attained a high total cost of cloudlets of 33288.01, 29819.64 and 

22127.08 correspondingly. Meanwhile, under the iteration of 15, the BTO-GSA approach has attained lower total cost of 

31102.25 and the PSO algorithm has given maximum total cost of 257046.55. Simultaneously, the existing methods like 

C-GSA, LIGSA-C and HG-GSA algorithms have shown a high total cost of 43246.33, 40039.80 and 32676.34 

correspondingly. In line with this, under the maximum iteration of 20, the projected BTO-GSA algorithm has generated a 

least total cost of 43250.12 while the PSO algorithm has reached to a maximum total cost of cloudlets of 371324.59. 

Similarly, the other existing models like C-GSA, LIGSA-C and HG-GSA methodologies tends to a considerable total 

cost of cloudlets of 52452.21, 51730.62 and 44085.78 correspondingly. The above-mentioned tables and figures clearly 

stated that the BTO-GSA algorithm is superior to other algorithms under diverse aspects.  

4. Conclusion 

This paper has devised a new load scheduling algorithm using hybridization of metaheuristic algorithm, called BTO-

GSA algorithm. The proposed BTO-GSA algorithm make use of Splitting Point Selection technique based GSA to 

identify the optimum positions of the particles in the search space. The application of BTO algorithm relied on the 

mathematical tree subject, improvises the outcome and searching speed by incessantly eliminates the portions of the 

search space with minimum fitness for minimizing and purifying the search space. The BTO-GSA model has been 

implemented using CloudSim simulation. The outcome from the experiments pointed out that the BTO-GSA model is 

superior to other methods in a significant way. In future, the performance of the BTO-GSA model can be improvised by 

the use of deep learning methods.  
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