
JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6800

ARCHITECTURE OPTIMIZATION AND PERFORMANCE COMPARISON OF

NONCE-MISUSE-RESISTANT AUTHENTICATED ENCRYPTION

ALGORITHMS
1 K.MAHESH,

2 G.VASANTHI,
3
G P.PRADEEP KUMAR

123
Assistant Professor

Department of ECE

Dr. K V Subba Reddy Institute Of Technology

ABSTRACT:

This study compares the performance of new authenticated encryption (AE) algorithms with those of current

standards in order to provide enhanced security and resource efficiency. These algorithms provide a crucial

characteristic known as nonce-misuse resistance, which enhances the security of current AE standards. In

addition to a proposal from the Crypto Forum Research Group, this document discusses algorithm to architecture

mappings of a number of contenders from the current Competition for AE: Security, Applicability, and

Robustness.

The design of a well-known standard, the Advanced Encryption Standard in Galois Counter mode (AES-GCM),

is contrasted with implementations of the architectures on platforms for both field-programmable gate arrays and

application-specific integrated circuits. The provided optimisations are relevant to AE generally and nonce-

misuse-resistant designs specifically. Additionally, a codesign strategy for hardware and software is addressed.

The implementations made possible by the suggested optimisations show that new AE algorithms may provide

speed on par with that of AES-GCM while boosting security and resource efficiency for certain use-case

situations.

Index Terms—Authenticated encryption (AE), Competition for AE: Security, Applicability, and Robustness

(CAESAR), Deoxys, nonce-misuse resistance, pipelineable on-line encryption with authentication tag (POET),

PRIMATE-APE. Advanced Encryption Standard in Galois Counter mode (AES-GCM), AES-GCM-synthetic IV

(SIV), and authenticated encryption (AE).

I. INTRODUCTION

WITH the advent of the Internet of Things (IoT)

era, billions of devices will be connected to each

other and to a common network. Hence, it is of

utmost importance to ensure security and privacy of

communication between the devices as well as

between the device and the cloud server. Moreover,

there is a growing trend to bring computing to the

edge of the IoT rather than the cloud, termed as

edgecentric computing [1]. Hence, resource

efficient and strongly secure cryptographic

algorithms which can ensure the security of

communication and can be implemented on the

hardware of the device itself have become critical.

Also, algorithms that require smaller key sizes, less

frequent change of keys, and better resilience are

desired.

Authenticated encryption (AE) algorithms combine

the process of authentication and encryption to

create a single algorithm which is secure and

resource efficient. It is well understood that

confidentiality of data does not suffice, and it is

important to ensure authentication of source as well

as data integrity [2]. Hence, AE algorithms are

growing in importance with the changing device

scenarios and platforms. When data such as packet

headers and message numbers are also included as

part of the plaintext, the resulting algorithms are

termed AE with associated data (AEAD)

algorithms. These additional data require only

authentication and are termed associated data. The

general equations of AEAD are expressed as

follows:

In these equations, K represents the secret key, AD

represents the associated data, PT refers to the

plaintext, and N is a unique nonrepeating number

termed nonce. These inputs are applied to the

encryption algorithm Enc to produce the outputs:

CT, which represents the encryption of the

plaintext, and Tag, which are utilized for

authentication purposes. The nonce is used to

transmit more than one message block using the

same secret key. For the decryption algorithm Dec,

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6801

N, AD, CT, Tag, and K are used as inputs to

retrieve PT. In addition, Tag is verified and a

valid/invalid message is generated (represented as ⊥

in the equation).

Some of the existing standards for AEAD

algorithms include Advanced Encryption Standard

in Galois Counter mode (AES-GCM), Advanced

Encryption Standard in Counter with cipher block

chaining message authentication code mode,

encrypt-then-authenticate-then-translate, Offset

Codebook (OCB) mode, etc. We do not delve into

the details of these algorithms and refer the reader

to the existing literature [3]–[6]. Instead, we focus

on AES-GCM which has been deployed in most

practical applications such as Transport Layer

Security (TLS) and Secure Socket Layer. Using

AESGCM as a baseline architecture, we present the

architectures of several new algorithms which have

been proposed as a part of the ongoing Competition

for AE: Security, Applicability, and Robustness

(CAESAR) competition as well as from Crypto

Forum Research Group (CFRG). The chosen

algorithms incorporate an important property

termed nonce-misuse-resistance.

II.RELATED WORK

In this section, we discuss the shortcomings of

current AEAD algorithms and motivation for this

paper.

A. New AEAD Schemes

Several issues have been identified in existing AE

algorithms. Some of these are highlighted below.

1) Existing algorithms are still too large in terms of

area or consume too much energy. This is especially

true if the AE schemes are to be implemented on a

devicewhich has minimal resources.

2) Several security properties such as nonce-misuse

resistance, decryption misuse resistance, robustness

against leakage of plaintext, detection of forgery

attempts, and so on are desirable and missing in

existing AEAD algorithms.

3) Cryptanalytical efforts have found groups of

weak keys in the most widely adopted AES-GCM

algorithm [9].

4) Better performance while maintaining the same

level of security of existing standards or better

security with the same performance are both

desirable. This is especially true due to increase in

number and reduction in the size of devices in

modern applications. To alleviate some of these

problems, a call for novel authenticated algorithms

was put forth in the form of CAESAR competition.

The goal of this competition is to identify a

portfolio of AE algorithms which offer advantages

over AES-GCM and are suitable for widespread

adoption [10].

The competition is ongoing and currently in its final

round with seven finalists. The first round had 54

submissions out of which 29 candidates were

selected for the second round. In the third round, 15

potential candidates were recognized. These

candidates have different properties with respect to

security, resource consumption, and underlying

constructions. A summary for the candidates and

their important properties can be found in [11] and

[12]. A candidate that we discuss in this paper,

Deoxys, has been selected to the final round of the

competition. Note that even though some of the

candidates selected for this paper have not been

selected for the final round of the CAESAR

competition, these are useful candidates for several

applications. Since the competition considers

several parameters apart from security, these

candidates have been excluded from the next round.

We also consider an algorithm submitted to CFRG

after the CAESAR competition first round

submission deadline.

Several independent implementations of the

algorithms in both hardware and software can be

found in the literature. To bring these

implementations under the same platform, there is

an ongoing effort being carried out by the

SUPERCOP software benchmarking team and the

ATHENa GMU hardware platform team [13]. Our

work specifically focuses on in-depth analysis of

nonce-misuse resistance schemes whose details and

significance will be discussed next.

B. Importance of Nonce-Misuse Resistance

From the description of AEAD schemes, it is

observed that nonces are critical to the security of

symmetric key cryptographic algorithms. The

construction of these algorithms is such that using

the same key, multiple messages can be encrypted

by using different nonces. Hence, the nonce must

not repeat under the same key. Even though this

appears to be a simple requirement, it is not easy to

satisfy as has been observed in many practical

applications [14].

There are several approaches that can be used to

ensure nonces do not repeat while using the same

key. One solution is to update the keys frequently.

However, regular exchange of secret keys between

two parties is not an easy task and many

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6802

applications will not have the capability to do so.

Specifically, with systems involving IoT devices

where millions of devices are interconnected with

each other, the most practical implementation

would program one secret key and utilize it for the

lifetime of the device. The second approach to

ensure nonces do not repeat is to derive the nonces

from counters. With sufficiently large counters, the

nonce values will be based on each increment of the

counter and will not repeat. However, if the counter

is made to overflow by injecting faults or other

forms of attacks, the nonces start to repeat breaking

the security of the algorithm. Finally, the nonce can

TABLE I SUMMARY OF CANDIDATE

FEATURES AND COMPARISON WITH AES-

GCM

be made unique by using random number

generators. However, the random number generator

should be of high quality and sufficiently large.

Ensuring this requirement is met again is a

challenging task with the ever-shrinking sizes of

devices. Attacks due to nonce-misuse have been

demonstrated in the literature in important

applications such as the TLS [14]. Thus, algorithms

which can inherently provide some form of

noncemisuse resistance have become favorable and

will continue to increase in importance as IoT

devices become more prevalent.

III. ALGORITHM AND ARCHITECTURAL

DESCRIPTIONS

Next, we briefly discuss the algorithm and

architecture of AES-GCM standard. The

discussions of nonce-misuseresistant algorithms and

architectures will be based on this standard.

A. AES-GCM

The AES-GCM algorithm is represented using the

block diagram of Fig. 1. This algorithm is a block

cipher-based

Fig. 1. Description of the algorithm of AES-GCM.

Left: cipher text block generation using a counter.

Right: associated data processing and processing of

plaintext blocks to generate the tag.

AE scheme. This implies that a block cipher such as

AES is used to perform all encryption operations.

AES in the counter (CTR) mode of operation

handles plaintext in a block by block manner to

generate cipher text blocks. The first value of the

counter is dependent on the nonce, and the counter

is incremented to process subsequent message

blocks. The authentication process is handled by a

Galois field multiplier which performs polynomial

multiplication on the associated data and the

generated cipher text blocks. A final encryption

results in the generation of the tag value. Note that

the counter value is encrypted using the AES block

and the plaintext is just XORed with the output.

This implies that the security of the algorithm is

completely dependent on the nonce being different

for each message. If the same nonce repeats for two

different messages, a simple XOR operation can

differentiate between them. Thus, information is

leaked, and the system is not nonce-misuse

resistant.

A serial implementation aimed at low area and

power consumption is used to design the

architecture of AES-GCM. This means that the

architecture makes use of a single AES block and

Galois field multiplier block. The blocks of the data

path of AES-GCM are illustrated in Fig. 2. The

plaintext blocks are processed serially and require

correct control to direct data in and out of the

blocks. All architectures created in this paper follow

the serial implementations. Based on the different

properties of the architecture, optimizations are then

added on top of the serial architecture. This is

discussed in Section IV.

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6803

Fig. 2. Data path of AES-GCM consisting of AES

block and Galois fiel multiplier block.

Fig. 3. FSMs of AES-GCM for encryption and

authentication in a blockinterleaved manner. Signal

ct_done is used for synchronization between the

two FSMs.

associated data blocks and waits for the ct_done

signal. Upon receiving the signal, the processing of

cipher text blocks is performed in an interleaved

manner with the encryption process to generate the

tag value. The ability to parallelly process multiple

message blocks is an important property of the

AES-GCM algorithm since it results in a good

performance and resource utilization.

B. Deoxys

Deoxys is a block-cipher-based AE algorithm

utilizing a tweakable block cipher, Deoxys-BC.

The tweakable block cipher is based on AES but

uses a key and a tweak value. It has more rounds

than standard AES, claiming better security. The

Deoxys algorithm has two modes: one for which

nonce must not be reused and one which is nonce-

misuse resistant. The nonce-misuse-resistant

version of Deoxys provides full 128-bit security for

unique nonces and birthday bound security when

nonce is reused. Existing hardware and software

implementation also shows that it is suitable for

short messages having low precomputation

overhead.

The basic steps of Deoxys authentication and

encryption are described in Fig. 4. Since the block

cipher in Deoxys is a custom built tweakable block

cipher, the inputs include an additional tweak value

which needs to be provided each time the

encryption block is called. From the block diagram,

we observe that the associated data blocks are

processed first followed by the plaintext blocks.

Finally, incorporating the nonce value into the

tweak value, the tag is generated. Note that, for the

encryption process, the nonce value is used as input

to the block cipher. The tag value is incorporated

into the tweak value. Thus, there is a dependence

between the tag generation and cipher-text

generation in Deoxys. This will lead

Fig. 4. Description of the algorithm of Deoxys. The

encryption block in this figure is the tweakable

Deoxys block cipher with a key and tweak as

inputs. Top: tag generation. The generated tag is

used for processing of plaintext blocks to generate

cipher text blocks.

to important differences in the architectural

implementation and optimizations.

IV. OPTIMIZATIONS

In this section, we discuss some of the

optimizations that can be applied to the discussed

AEAD schemes. These optimizations are either

targeted to utilize the properties of the FPGA

platforms or the properties of the algorithm itself. In

Section V, we present the results of optimization on

the algorithms and discuss which of the

optimizations are most suitable for each algorithm.

Fig. 12. Parallel processing of messages in AES-

GCM-SIV.

A. Parallel Processing of Messages

From the architecture of AES-GCM, we have

observed that it is inherently parallel in nature. This

means that when a cipher text block is being

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6804

generated by the encryption algorithm, parallel

processing of data by the authentication algorithm

can occur.This is an important property which

results in low cycles per byte for AES-GCM.

However, by modifications, such as pipelining and

parallelism, this property can be utilized to optimize

other algorithms.

AES-GCM-SIV utilizes AES and multiplier blocks

for encryption and authentication operations.

Hence, similar to AES-GCM, the two operations

can be separated and performed in parallel.

However, in AES-GCM-SIV, authentication occurs

first and there is a data dependence between

authentication and encryption. This means that first

the authentication process must be performed

completely to generate the tag and then the cipher

text blocks can be generated through encryption. To

break this dependence, we can process two

messages in parallel and pipeline the design such

that the two processes occur using two different

FSMs. This concept is illustrated in Fig. 12.

Synchronization is necessary for the parallel

processing of messages. This can be achieved by

using flags as indicated in the figure. After the

associated data blocks of the second message are

processed, the processing of plaintext blocks using

the multiplier begins. At this time, the processing of

plaintext blocks of message 1 can be carried out by

the second state machine. Note that the tag of the

first message needs to be stored for the encryption

block to access during processing of message 2.

Fig. 13. Parallel processing of messages in Deoxys.

processing of messages but will also increase the

resource consumption because of duplication.

B. Implementation of S-Box in Memory

The discussed algorithms utilize lookup tables

(LUTs) in the form of S-Boxes of block ciphers.

Each S-Box maps 1 byte of a message to 1 byte of

the substitution value. Since each message block is

of size 16 bytes (128 bits), 16 such S-Boxes are

necessary to process a complete message block.

These LUTs can be implemented using a

straightforward implementation where the LUTs are

synthesized using pure combinational logic

elements. However, we note that most modern-day

device platforms such as FPGAs and

microcontrollers have some form of memory

available on board. This memory can be used to

port the LUTs of S-Boxes. This results in reduction

of logic elements and utilization of the available

memory blocks of the device platform.

V. RESULTS

In this section, we describe the experimental setup

adopted for all implementations and discuss the

corresponding results obtained after applying

optimizations discussed in Section IV.

Results are reported both in terms of FPGA and

ASIC implementations wherever applicable. This

ensures platform obliviousness while making the

final comparisons between different algorithms.

Note that the described results mainly compare the

encryption operation of the AEAD algorithms.

Comparison of the decryption or a combination of

both is scope for future work.

A. Experimental Setup

All results on the FPGA platform are obtained using

Altera’s Cyclone V family of FPGA which are built

on TSMC’s 28-nm low-power process technology.

Specifically, Altera Cyclone 5CSEMA4U23C6

incorporated in an ATLAS SoC board is utilized.

The Cyclone V family of FPGAs allows for low-

area, low-cost implementations of algorithms. The

implementations are written in Verilog Hardware

Descriptive Language and simulated using the

ModelSim tool. Synthesis

is performed using the Altera Quartus Prime tool

and timing measurements are performed using the

TimeQuest timing analyzer. While running

synthesis, area optimization is enabled, and a target

frequency of 50 MHz is used. Power measurements

are performed using the PowerPlay power analyzer

tool.

For every experiment performed, the following

measurements are reported.

1) The area consumption is reported both in terms

of LUTs, which are the basic combinational

elements of FPGAs, as well as register count. The

resource utilization of the cipher as a percentage of

the total adaptive logic modules (ALMs) and

registers of the FPGA is also presented.

2) The output of power play power analyzer tool is

reported in terms of power in milliwatt. Before

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6805

running the tool, appropriate inputs in terms of

value change dump files of the simulation of

modules is provided. Only dynamic power is

considered since the leakage power reported by the

tool is for the entire fabric of the FPGA and does

not correctly represent the leakage power of the

design. Details of the generation of power values

can be referenced from [7].

3) We report the time of operation in terms of

cycles per byte which is defined as the number of

cycles required to process each byte of the message.

This measure is independent of the FPGA platform

and is an important measure of the performance. It

is calculated using the following equation:

The value for the number of cycles is obtained

through simulation.

B. Implementation 1: Direct Implementation of

the Algorithms Using Combinational Logic Only

The architectural descriptions provided in Section

III are directly mapped to hardware. This results in

implementations which are unoptimized but provide

a good first comparison between all the algorithms.

The results are tabulated in Table III for a clock

speed of 50 MHz. Note that ASIC implementations

are also included in the same table for comparison.

From the results, we observe that in terms of area,

PRIMATE-APE is the smallest. This can be

attributed to the fact that the PRIMATEs are

sponge-based designs and, hence, are expected to be

lightweight. The next smallest architecture with

respect to area is the Deoxys algorithm. With the

modifications of the algorithm as applied to version

v 1.4.1, the area of the algorithm has reduced

further. Both versions of Deoxys have the

advantage of utilizing just one block cipher for both

authentication and encryption processes. This

avoids multiplication which is a resource-intensive

operation. AES-GCM-SIV and POET are slightly

more resource consuming in terms of area

compared to AES-GCM. The power consumption

trends are almost similar to the area consumption

trends with PRIMATE and Deoxys having the least

FPGA power consumption values.

VII. CONCLUSION

We have shown the usage of both FPGA and ASIC

platforms to develop a number of nonce-misuse-

resistant algorithms in this work. Comparing the

options to the AES-GCM method, all of them

exhibit noncemisuse resistance. This is due to the

fact that in AES-GCM, the AES algorithm in CTR

mode employed the nonce directly. Only XORing

the plaintext produced this outcome. As a result,

every repeat of the nonce revealed the plaintext.

The tag, which varies even if the nonce is repeated,

determines the cypher text in both Deoxys and

AES-GCM-SIV. The message block is provided as

an input to the block cipher/sponge block in POET

and PRIMATE, eliminating the cypher text's direct

reliance on the nonce. As a result, all of these

algorithms are nonce-misuse resistant when

compared to AES-GCM.

The significant architectural changes brought about

by the addition of nonce-misuse resistance were

explored, and solutions to the problems were also

offered. We have suggested the individuals most

suited for each application scenario as shown in

Table VIII based on the findings from Section V.

Future work in this field will look at how to better

optimise these algorithms' architectures. This study

gave a preliminary description of side-channel

analysis. Future study should focus on side-channel

assaults that are experimental and countermeasure

suggestions.

TABLE VIII RECOMMENDATIONS OF

CANDIDATES BASED ON OBSERVED

RESULTS

REFERENCES

[1] P. G. Lopez et al., “Edge-centric computing:

Vision and challenges,”ACM SIGCOMM Comput.

Commun. Rev., vol. 45, no. 5, pp. 37–42, Oct.

2015.

[2] M. Bellare and C. Namprempre, “Authenticated

encryption: Relations among notions and analysis of

the generic composition paradigm,” in Proc. Int.

Conf. Theory Appl. Cryptol. Inf. Secur. Berlin,

Germany: Springer, 2000, pp. 531–545.

[3] J. Salowey, A. Choudhury, and D. McGrew,

AES Galois Counter Mode (GCM) Cipher Suites

for TLS, document RFC 5288, 2008.

[4] D. McGrew and D. Bailey, AES-CCM Cipher

Suites for Transport Layer Security (TLS),

document RFC 6655, 2012.

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 7, ISSUE 10, 2020

6806

[5] M. Bellare, P. Rogaway, and D. Wagner, “The

EAX mode of operation,” in Proc. Int. Workshop

Fast Softw. Encryption. Berlin, Germany: Springer,

2004, pp. 389–407.

[6] P. Rogaway, M. Bellare, and J. Black, “OCB: A

block-cipher mode of operation for efficient

authenticated encryption,” ACM Trans. Inf. Syst.

Secur., vol. 6, no. 3, pp. 365–403, Aug. 2003.

[7] S. Koteshwara, A. Das, and K. K. Parhi, “FPGA

implementation and comparison of AES-GCM and

Deoxys authenticated encryption schemes,” in Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017,

pp. 1–4.

[8] S. Koteshwara, A. Das, and K. K. Parhi,

“Performance comparison of AES-GCM-SIV and

AES-GCM algorithms for authenticated encryption

on FPGA platforms,” in Proc. Asilomar Conf.

Signals, Syst. Comput., Oct. 2017, pp. 1331–1336.

[9] H. Handschuh and B. Preneel, “Key-recovery

attacks on universal hash function based MAC

algorithms,” in Proc. Annu. Int. Cryptol. Conf.

Berlin, Germany: Springer, 2008, pp. 144–161.

[10] D. J. Bernstein. (2014). CAESAR: Competition

for Authenticated Encryption: Security,

Applicability, and Robustness. [Online]. Available:

http://competitions.cr.yp.to/caesar.html.

