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ABSTRACT:  

This study compares the performance of new authenticated encryption (AE) algorithms with those of current 

standards in order to provide enhanced security and resource efficiency. These algorithms provide a crucial 

characteristic known as nonce-misuse resistance, which enhances the security of current AE standards. In 

addition to a proposal from the Crypto Forum Research Group, this document discusses algorithm to architecture 

mappings of a number of contenders from the current Competition for AE: Security, Applicability, and 

Robustness. 

The design of a well-known standard, the Advanced Encryption Standard in Galois Counter mode (AES-GCM), 

is contrasted with implementations of the architectures on platforms for both field-programmable gate arrays and 

application-specific integrated circuits. The provided optimisations are relevant to AE generally and nonce-

misuse-resistant designs specifically. Additionally, a codesign strategy for hardware and software is addressed. 

The implementations made possible by the suggested optimisations show that new AE algorithms may provide 

speed on par with that of AES-GCM while boosting security and resource efficiency for certain use-case 

situations. 

Index Terms—Authenticated encryption (AE), Competition for AE: Security, Applicability, and Robustness 

(CAESAR), Deoxys, nonce-misuse resistance, pipelineable on-line encryption with authentication tag (POET), 

PRIMATE-APE. Advanced Encryption Standard in Galois Counter mode (AES-GCM), AES-GCM-synthetic IV 

(SIV), and authenticated encryption (AE). 

 

I. INTRODUCTION 

WITH the advent of the Internet of Things (IoT) 

era, billions of devices will be connected to each 

other and to a common network. Hence, it is of 

utmost importance to ensure security and privacy of 

communication between the devices as well as 

between the device and the cloud server. Moreover, 

there is a growing trend to bring computing to the 

edge of the IoT rather than the cloud, termed as 

edgecentric computing [1]. Hence, resource 

efficient and strongly secure cryptographic 

algorithms which can ensure the security  of 

communication and can be implemented on the 

hardware of the device itself have become critical. 

Also, algorithms that require smaller key sizes, less 

frequent change of keys, and better resilience are 

desired. 

Authenticated encryption (AE) algorithms combine 

the process of authentication and encryption to 

create a single algorithm which is secure and 

resource efficient. It is well understood that 

confidentiality of data does not suffice, and it is 

important to ensure authentication of source as well 

as data integrity [2]. Hence, AE algorithms are 

growing in importance with the changing device 

scenarios and platforms. When data such as packet 

headers and message numbers are also included as 

part of the plaintext, the resulting algorithms are 

termed AE with associated data (AEAD) 

algorithms. These additional data require only 

authentication and are termed associated data. The 

general equations of AEAD are expressed as 

follows: 

 
In these equations, K represents the secret key, AD 

represents the associated data, PT refers to the 

plaintext, and N is a unique nonrepeating number 

termed nonce. These inputs are applied to the 

encryption algorithm Enc to produce the outputs: 

CT, which represents the encryption of the 

plaintext, and Tag, which are utilized for 

authentication purposes. The nonce is used to 

transmit more than one message block using the 

same secret key. For the decryption algorithm Dec, 
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N, AD, CT, Tag, and K are used as inputs to 

retrieve PT. In addition, Tag is verified and a 

valid/invalid message is generated (represented as ⊥ 

in the equation). 

Some of the existing standards for AEAD 

algorithms include Advanced Encryption Standard 

in Galois Counter mode (AES-GCM), Advanced 

Encryption Standard in Counter with cipher block 

chaining message authentication code mode, 

encrypt-then-authenticate-then-translate, Offset 

Codebook (OCB) mode, etc. We do not delve into 

the details of these algorithms and refer the reader 

to the existing literature [3]–[6]. Instead, we focus 

on AES-GCM which has been deployed in most 

practical applications such as Transport Layer 

Security (TLS) and Secure Socket Layer. Using 

AESGCM as a baseline architecture, we present the 

architectures of several new algorithms which have 

been proposed as a part of the ongoing Competition 

for AE: Security, Applicability, and Robustness 

(CAESAR) competition as well as from Crypto 

Forum Research Group (CFRG). The chosen 

algorithms incorporate an important property 

termed nonce-misuse-resistance. 

II.RELATED WORK 

In this section, we discuss the shortcomings of 

current AEAD algorithms and motivation for this 

paper. 

A. New AEAD Schemes 

Several issues have been identified in existing AE 

algorithms. Some of these are highlighted below. 

1) Existing algorithms are still too large in terms of 

area or consume too much energy. This is especially 

true if the AE schemes are to be implemented on a 

devicewhich has minimal resources. 

2) Several security properties such as nonce-misuse 

resistance, decryption misuse resistance, robustness 

against leakage of plaintext, detection of forgery 

attempts, and so on are desirable and missing in 

existing AEAD algorithms. 

3) Cryptanalytical efforts have found groups of 

weak keys in the most widely adopted AES-GCM 

algorithm [9]. 

4) Better performance while maintaining the same 

level of security of existing standards or better 

security with the same performance are both 

desirable. This is especially true due to increase in 

number and reduction in the size of devices in 

modern applications. To alleviate some of these 

problems, a call for novel authenticated algorithms 

was put forth in the form of CAESAR competition. 

The goal of this competition is to identify a 

portfolio of AE algorithms which offer advantages 

over AES-GCM and are suitable for widespread 

adoption [10]. 

The competition is ongoing and currently in its final 

round with seven finalists. The first round had 54 

submissions out of which 29 candidates were 

selected for the second round. In the third round, 15 

potential candidates were recognized. These 

candidates have different properties with respect to 

security, resource consumption, and underlying 

constructions. A summary for the candidates and 

their important properties can be found in [11] and 

[12]. A candidate that we discuss in  this paper, 

Deoxys, has been selected to the final round of the 

competition. Note that even though some of the 

candidates selected for this paper have not been 

selected for the final round of the CAESAR 

competition, these are useful candidates for several 

applications. Since the competition considers 

several parameters apart from security, these 

candidates have been excluded from the next round. 

We also consider an algorithm submitted to CFRG 

after the CAESAR competition first round 

submission deadline. 

Several independent implementations of the 

algorithms in both hardware and software can be 

found in the literature. To bring these 

implementations under the same platform, there is 

an ongoing effort being carried out by the 

SUPERCOP software benchmarking team and the 

ATHENa GMU hardware platform team [13]. Our 

work specifically focuses on in-depth analysis of 

nonce-misuse resistance schemes whose details and 

significance will be discussed next. 

B. Importance of Nonce-Misuse Resistance 

From the description of AEAD schemes, it is 

observed that nonces are critical to the security of 

symmetric key cryptographic algorithms. The 

construction of these algorithms is such that using 

the same key, multiple messages can be encrypted 

by using different nonces. Hence, the nonce must 

not repeat under the same key. Even though this 

appears to be a simple requirement, it is not easy to 

satisfy as has been observed in many practical 

applications [14]. 

There are several approaches that can be used to 

ensure nonces do not repeat while using the same 

key. One solution is to update the keys frequently. 

However, regular exchange of  secret keys between 

two parties is not an easy task and many  
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applications will not have the capability to do so. 

Specifically, with systems involving IoT devices 

where millions of devices are interconnected with 

each other, the most practical implementation 

would program one secret key and utilize it for the 

lifetime of the device. The second approach to 

ensure nonces do not repeat is to derive the nonces 

from counters. With sufficiently large counters, the 

nonce values will be based on each increment of the 

counter and will not repeat. However, if the counter 

is made to overflow by injecting faults or other 

forms of attacks, the nonces start to repeat breaking 

the security of the algorithm. Finally, the nonce can  

TABLE I SUMMARY OF CANDIDATE 

FEATURES AND COMPARISON WITH AES-

GCM 

 
be made unique by using random number 

generators. However, the random number generator 

should be of high quality and sufficiently large. 

Ensuring this requirement is met again is a 

challenging task with the ever-shrinking sizes of 

devices. Attacks due to nonce-misuse have been 

demonstrated in the literature in important 

applications such as the TLS [14]. Thus, algorithms 

which can inherently provide some form of 

noncemisuse resistance have become favorable and 

will continue to increase in importance as IoT 

devices become more prevalent. 

III. ALGORITHM AND ARCHITECTURAL 

DESCRIPTIONS 

Next, we briefly discuss the algorithm and 

architecture of AES-GCM standard. The 

discussions of nonce-misuseresistant algorithms and 

architectures will be based on this standard. 

A. AES-GCM 

The AES-GCM algorithm is represented using the 

block diagram of Fig. 1. This algorithm is a block 

cipher-based 

 
Fig. 1. Description of the algorithm of AES-GCM. 

Left: cipher text block generation using a counter. 

Right: associated data processing and processing of 

plaintext blocks to generate the tag. 

AE scheme. This implies that a block cipher such as 

AES is used to perform all encryption operations. 

AES in the counter (CTR) mode of operation 

handles plaintext in a block by block manner to 

generate cipher text blocks. The first value of the 

counter is dependent on the nonce, and the counter 

is incremented to process subsequent message 

blocks. The authentication process is handled by a 

Galois field multiplier which performs polynomial 

multiplication on the associated data and the 

generated cipher text blocks. A final encryption 

results in the generation of the tag value. Note that 

the counter value is encrypted using the AES block 

and the plaintext is just XORed with the output. 

This implies that the security of the algorithm is 

completely dependent on the nonce being different 

for each message. If the same nonce repeats for two 

different messages, a simple XOR operation can 

differentiate between them. Thus, information is 

leaked, and the system is not nonce-misuse 

resistant. 

A serial implementation aimed at low area and 

power consumption is used to design the 

architecture of AES-GCM. This means that the 

architecture makes use of a single AES block and 

Galois field multiplier block. The blocks of the data 

path of AES-GCM are illustrated in Fig. 2. The 

plaintext blocks are processed serially and require 

correct control to direct data in and out of the 

blocks. All architectures created in this paper follow 

the serial implementations. Based on the different 

properties of the architecture, optimizations are then 

added on top of the serial architecture. This is 

discussed in Section IV. 
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Fig. 2. Data path of AES-GCM consisting of AES 

block and Galois fiel multiplier block. 

 
Fig. 3. FSMs of AES-GCM for encryption and 

authentication in a blockinterleaved manner. Signal 

ct_done is used for synchronization between the 

two FSMs. 

associated data blocks and waits for the ct_done 

signal. Upon receiving the signal, the processing of 

cipher text blocks is performed in an interleaved 

manner with the encryption process to generate the 

tag value. The ability to parallelly process multiple 

message blocks is an important property of the 

AES-GCM algorithm since it results in a good 

performance and resource utilization. 

B. Deoxys 

Deoxys is a block-cipher-based AE algorithm 

utilizing a  tweakable block cipher, Deoxys-BC. 

The tweakable block cipher is based on AES but 

uses a key and a tweak value. It has more rounds 

than standard AES, claiming better security. The 

Deoxys algorithm has two modes: one for which 

nonce  must not be reused and one which is nonce-

misuse resistant. The nonce-misuse-resistant 

version of Deoxys provides full 128-bit security for 

unique nonces and birthday bound security when 

nonce is reused. Existing hardware and software 

implementation also shows that it is suitable for 

short messages having low precomputation 

overhead. 

The basic steps of Deoxys authentication and 

encryption are described in Fig. 4. Since the block 

cipher in Deoxys is a custom built tweakable block 

cipher, the inputs include an additional tweak value 

which needs to be provided each  time the 

encryption block is called. From the block diagram, 

we observe that the associated data blocks are 

processed first followed by the plaintext blocks. 

Finally, incorporating the nonce value into the 

tweak value, the tag is generated. Note that, for the 

encryption process, the nonce value is used as input 

to the block cipher. The tag value is incorporated 

into the tweak value. Thus, there is a dependence 

between the tag generation and cipher-text 

generation in Deoxys. This will lead  

 
Fig. 4. Description of the algorithm of Deoxys. The 

encryption block in this figure is the tweakable 

Deoxys block cipher with a key and tweak as 

inputs. Top: tag generation. The generated tag is 

used for processing of plaintext blocks to generate 

cipher text blocks. 

to important differences in the architectural 

implementation and optimizations. 

IV. OPTIMIZATIONS 

In this section, we discuss some of the 

optimizations that can be applied to the discussed 

AEAD schemes. These optimizations are either 

targeted to utilize the properties of the FPGA 

platforms or the properties of the algorithm itself. In 

Section V, we present the results of optimization on 

the algorithms and discuss which of the 

optimizations are most suitable for each algorithm. 

 
Fig. 12. Parallel processing of messages in AES-

GCM-SIV. 

A. Parallel Processing of Messages 

From the architecture of AES-GCM, we have 

observed that it is inherently parallel in nature. This 

means that when a cipher text block is being 
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generated by the encryption algorithm, parallel 

processing of data by the authentication algorithm 

can occur.This is an important property which 

results in low cycles per byte for AES-GCM. 

However, by modifications, such as pipelining and 

parallelism, this property can be utilized to optimize 

other algorithms.  

AES-GCM-SIV utilizes AES and multiplier blocks 

for encryption and authentication operations. 

Hence, similar to AES-GCM, the two operations 

can be separated and performed in parallel. 

However, in AES-GCM-SIV, authentication occurs 

first and there is a data dependence between 

authentication and encryption. This means that first 

the authentication process must be performed 

completely to generate the tag and then the cipher 

text blocks can be generated through encryption. To 

break this dependence, we can process two 

messages in parallel and pipeline the design such 

that the two processes occur using two different 

FSMs. This concept is illustrated in Fig. 12. 

Synchronization is necessary for the parallel 

processing of messages. This can be achieved by 

using flags as indicated in the figure. After the 

associated data blocks of the second message are 

processed, the processing of plaintext blocks using 

the multiplier begins. At this time, the processing of 

plaintext blocks of message 1 can be carried out by 

the second state machine. Note that the tag of the 

first message needs to be stored for the encryption 

block to access during processing of message 2. 

 
Fig. 13. Parallel processing of messages in Deoxys. 

processing of messages but will also increase the 

resource  consumption because of duplication. 

B. Implementation of S-Box in Memory 

The discussed algorithms utilize lookup tables 

(LUTs) in the form of S-Boxes of block ciphers. 

Each S-Box maps 1 byte of a message to 1 byte of 

the substitution value. Since each message block is 

of size 16 bytes (128 bits), 16 such S-Boxes are 

necessary to process a complete message block. 

These LUTs can be implemented using a 

straightforward implementation where the LUTs are 

synthesized using pure combinational logic 

elements. However, we note that most modern-day 

device platforms such as FPGAs and 

microcontrollers have some form of memory 

available on board. This memory can be used to 

port the LUTs of S-Boxes. This results in reduction 

of logic elements and utilization of the available 

memory blocks of the device platform.  

V. RESULTS 

In this section, we describe the experimental setup 

adopted for all implementations and discuss the 

corresponding results obtained after applying 

optimizations discussed in Section IV. 

Results are reported both in terms of FPGA and 

ASIC implementations wherever applicable. This 

ensures platform obliviousness while making the 

final comparisons between different algorithms. 

Note that the described results mainly compare the 

encryption operation of the AEAD algorithms. 

Comparison of the decryption or a combination of 

both is scope for future work. 

A. Experimental Setup 

All results on the FPGA platform are obtained using 

Altera’s Cyclone V family of FPGA which are built 

on TSMC’s 28-nm low-power process technology. 

Specifically, Altera Cyclone 5CSEMA4U23C6 

incorporated in an ATLAS SoC board is utilized. 

The Cyclone V family of FPGAs allows for low-

area, low-cost implementations of algorithms. The 

implementations are written in Verilog Hardware 

Descriptive Language and simulated using the 

ModelSim tool. Synthesis  

is performed using the Altera Quartus Prime tool 

and timing measurements are performed using the 

TimeQuest timing analyzer. While running 

synthesis, area optimization is enabled, and a target 

frequency of 50 MHz is used. Power measurements 

are performed using the PowerPlay power analyzer 

tool. 

For every experiment performed, the following 

measurements are reported. 

1) The area consumption is reported both in terms 

of LUTs, which are the basic combinational 

elements of FPGAs, as well as register count. The 

resource utilization of the cipher as a percentage of 

the total adaptive logic modules (ALMs) and 

registers of the FPGA is also presented. 

2) The output of power play power analyzer tool is 

reported in terms of power in milliwatt. Before 
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running the tool, appropriate inputs in terms of 

value change dump files of the simulation of 

modules is provided. Only dynamic power is 

considered since the leakage power reported by the 

tool is for the entire fabric of the FPGA and does 

not correctly represent the leakage power of the 

design. Details of the generation of power values 

can be referenced from [7].  

3) We report the time of operation in terms of 

cycles per byte which is defined as the number of 

cycles required to process each byte of the message. 

This measure is independent of the FPGA platform 

and is an important measure of the performance. It 

is calculated using the following equation: 

 
The value for the number of cycles is obtained 

through simulation. 

B. Implementation 1: Direct Implementation of 

the Algorithms Using Combinational Logic Only 

The architectural descriptions provided in Section 

III are directly mapped to hardware. This results in 

implementations which are unoptimized but provide 

a good first comparison between all the algorithms. 

The results are tabulated in Table III for a clock 

speed of 50 MHz. Note that ASIC implementations 

are also included in the same table for comparison. 

From the results, we observe that in terms of area, 

PRIMATE-APE is the smallest. This can be 

attributed to the fact that the PRIMATEs are 

sponge-based designs and, hence, are expected to be 

lightweight. The next smallest architecture with 

respect to area is the Deoxys algorithm. With the 

modifications of the algorithm as applied to version 

v 1.4.1, the area of the algorithm has reduced 

further. Both versions of Deoxys have the 

advantage of utilizing just one block cipher for both 

authentication and encryption processes. This 

avoids multiplication which is a resource-intensive 

operation. AES-GCM-SIV and POET are slightly 

more resource consuming in terms of area 

compared to AES-GCM. The power consumption 

trends are almost similar to the area consumption 

trends with PRIMATE and Deoxys having the least 

FPGA power consumption values. 

VII. CONCLUSION 

We have shown the usage of both FPGA and ASIC 

platforms to develop a number of nonce-misuse-

resistant algorithms in this work. Comparing the 

options to the AES-GCM method, all of them 

exhibit noncemisuse resistance. This is due to the 

fact that in AES-GCM, the AES algorithm in CTR 

mode employed the nonce directly. Only XORing 

the plaintext produced this outcome. As a result, 

every repeat of the nonce revealed the plaintext. 

The tag, which varies even if the nonce is repeated, 

determines the cypher text in both Deoxys and 

AES-GCM-SIV. The message block is provided as 

an input to the block cipher/sponge block in POET 

and PRIMATE, eliminating the cypher text's direct 

reliance on the nonce. As a result, all of these 

algorithms are nonce-misuse resistant when 

compared to AES-GCM. 

The significant architectural changes brought about 

by the addition of nonce-misuse resistance were 

explored, and solutions to the problems were also 

offered. We have suggested the individuals most 

suited for each application scenario as shown in 

Table VIII based on the findings from Section V. 

Future work in this field will look at how to better 

optimise these algorithms' architectures. This study 

gave a preliminary description of side-channel 

analysis. Future study should focus on side-channel 

assaults that are experimental and countermeasure 

suggestions. 

TABLE VIII RECOMMENDATIONS OF 

CANDIDATES BASED ON OBSERVED 

RESULTS 
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