(-1)-Reconstruction of the Decomposables Solution of $\mathbf{M}_{\mathbf{n}}$

Prof.dr.Nihad Abduljalil
University of WARITH AL-ANBIYA'A
College of engineering / dep air conditioning and ref.
nihad.abduljalil@uowa.edu.iq

Zinah Nihad Abduljaleel
University of Karbala
Zenaalmosawy555@gmail.com

Abstract

The topic of reconstructing a relationship was raised in two different ways by S. Ulam (1960) and R. Fraise (1970). If the constraints R/E-X and R-/E-X are isomorphic for each element XE, then R and R are also isomorphic.The first falls under the weak hypotheses of E being a set and R, R being two relations with base E and the same arithema. If the constraints R / X and R / X are isomorphic for each stringent portion X of E, then R and R are also isomorphic, according to the second assertion. In this study, we demonstrate that the requirement is satisfied by the decomposable tournament Mn undergoing (-1) reconstruction. $R \ngtr A_{1}, A_{2}, A_{3,4}, A_{5}$ and $R>B_{1}, B_{2}, B_{3}, B_{4}$

Key words: decomposable Tournament, Reconstruction, Relation, 3-cycle, 4-cycle, Bounds, interval, isomorphic.

1.Introduction

We may represent the binary relation R as a dilation of a finite chain C . The points are therefore replaced with one of the following relations: We see that c has at least two points and differs from R whether it is a chain, 3 -cycle, 4 -cycle, or Mk . If $|\mathrm{c}|=2$, we get two classes, C 1 and C 2 , and the answers are as follows:

- One of such classes is a 4-cycle, whereas the other is either a 3-cycle or a 4-cycle.
- One is Mk , and the other is random [4] and [5].

If $|c|$ is 3 , then the answers are as follows:
One class is a 4-cycle, one is a 3-cycle or 4-cycle, and the others are 3-cycle, 4-cycle, or chains. Alternatively, one type is a Mk, while the others are 3-cycle, 4-cycle, chain, or Mk.

We see that there is a decomposable solution that does not include Mn but rather all of the aforementioned solutions, at least one of which contains a 4-cycle.

2. Tournaments characterization of $\boldsymbol{m}_{\boldsymbol{n}}$

The tournaments $\mathrm{m} n$ are defined in such a way that $\boldsymbol{m}_{\boldsymbol{n}}(\mathrm{i}, \mathrm{j})=+$ if and only if $\mathrm{i}=\mathrm{j}-1$ or $\mathrm{i}=\mathrm{j}+1$. It should be noted that $\mathrm{m}_{-} 4$ is a 4 -cycle and m 3 is a 3 -cycle.
These tournaments achieved the following success:

- $\boldsymbol{m}_{\boldsymbol{n}}$ and its inverse are isomorphic.
- $\boldsymbol{m}_{\boldsymbol{n}}$ cannot be decomposed.
- The number of 3 -cycles that pass through the vertices $1,2,3, \ldots, \mathrm{n}$ is given by $\boldsymbol{m}_{\boldsymbol{n}}$.

Receptivity $=(1,2,3,4, \ldots 3,2,1)$.

3. The A_{i} bounds description [3] and [4]

Allow the base by removing a 3 -cycle from $\mathrm{A}=\{0,1,2,3,4\}$, we get:
A1: by substituting a three-cycle for one of the points.
A2: by replacing two points with a chain of two items each.
A3: by substituting a three-chain for one of the points.
A4: defined by $=\mathrm{A} 4 /\{\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2\}(\mathrm{i} \bmod 5)$, isomorphic to 3-chain.
A5: A positive diamond defined by $=\mathrm{A} 5 /\{0,1,2,3\}$ when vertex equal to 0 .
A5/\{0, $1,2,3\}$ can be a negative diamond when vertex 1 , and A5 $(2,4)=+$, the diamonds are formed by removing a 3-cycle one and only one of the chain's two points to form two components, 1 , 2 . (negative when it is equal to 2 and positive when the vertex is equal to 1)

Notice:

The Ai is also not deleted from the chain, as shown by B1 by the 4 -chain, B1 and B2 by the 4 cycle, B3 by the positive diamond, and B4 by the negative diamond.
4. Theorem: R is solution of the problem $R \ngtr A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $R>B_{1}, B_{2}, B_{3}, B_{4}$.

Proof:

$1-R>B 1, B 2, B 3, B 4$, obviously if one of the classes is M_{k}. If none of the classes are M_{k}. In all circumstances, there are two classes, one of which embeds a 4-cycle and the other a 3-cycle, and we can prove that $\forall A: B_{i}<R$.
2. We have $\mathrm{R} \ngtr \mathrm{A} 1, \ldots$, An assumed that $\mathrm{Ai}<\mathrm{R}$.
-Either A_{i} has only one point in each C_{i}, or A_{i} is a chain (which is impossible).
-or, A_{i} has at least two points, and at least one of C_{i} is not totally contained; in this case, A_{i} is a chain dilate (impossible). (Based on A_{i} 's description)

Corollary:

R is the system solution, and $\mathrm{R} \ngtr \mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4$ and $R>B_{1}, B_{2}, B_{3}, B_{4}(-1)$. We know that the relation R is a dilatation of a chain C , and that each point of C may be replaced by a relation of base Ci , which is either a chain.
-A 3-cycle or a 4-cycle.
-A 4-cycle engine.
-One of the M_{k}.
According to Harary and Palmer's theorem, if the chain C has at least two points, R is not strong. [1]. It is known that any tournament with a cardinal greater than 4 is (1) constructible [2]. Then, if R is decomposable and has a cardinal greater than $4, \mathrm{R}$ is (-1)-reconstructive. We will express the isomorphism, f between and R i , which means we must establish $\mathrm{A}=\mathrm{i}=\mathrm{C} \mathrm{i}-$. We write $\forall A=C_{i}=C_{i}^{-}$the R decomposition is not unique, so we start with the provided decomposition and use the following approach to get the interval I of C . When a chain 1 cardinal of known 1 delates each point of i, these chains are classified as a single type. These maximum intervals are grouped so that each class Ci is either a 3-cycle, 4-cycle, or Mn ; or a chain, in which case C_{i-1} and C_{i+1} (if they exist) are not chains. In order to investigate the isomorphism from R to R^{-}, we consider R and R^{-}to be dilations of a chain C, with the points of C replaced by the classes C_{i} for R and C_{i}^{-}for R^{-}.

4.1 The first proposition

Every restriction of R of the kinds 3-cycle, 4-cycle, and M_{n} is entirely contained in one class of R, and the same is true for R^{-}.
Proof:
First, to prove that any 3-cycle belongs to one of the R classes it must done as follows:
If we have $\mathrm{a}, \mathrm{b} \in C_{i}$, and $\mathrm{c} \in C_{j}$, with $\mathrm{j} \neq \mathrm{A}$, then we get $\mathrm{R}(\mathrm{c}, \mathrm{a}) \neq \mathrm{R}(\mathrm{c}, \mathrm{b})$, and it follows that R / C_{i} is not an interval.
If i, j or k are distinct S_{i} two a two such as $a \in C_{l}, b \in C_{j}, c \in C_{k}$, then C_{i}, C_{j}, and C_{k} are the three points of C's delate.
If there is a 3-cycle in C and C is not a chain, then each 3-cycle in R is entirely contained in the class C_{i}, and vice versa for R. Since the final two relations may be reconverted by the sequence $\Gamma_{1}, \Gamma_{2} \ldots \Gamma_{p}$ each 3-cycle is totally contained in one class. p in such a way that $\Gamma_{i} \cap \Gamma_{i+l} \neq \varphi, \forall A$.

Corollary:

If $R / C_{i}-x$ is a 3-cycle, 4-cycle, or M_{n} for all x and A, then $f x(\mathrm{Ci}-x)$ is completely contained in R's class C_{j}^{-}of R^{-}.

Proof:

According to the above proposition 1, the image of a 3-cycle is a 3-cycle. which chains include a 3 -cycle in the class C_{j}^{-}, a 4-cycle, and M_{n}. When $R(x, y)=+$, we say that x domains y .

When each element of A dominates in R each element of B , the part A dominates the part B . When the portion A is dominant in R, it is complementary; when it is demonized in R, it is complementary.

Remark: If part A is dominant in R, there is no part B dominant in R with the same cardinal as part A. Specifically, when each element of $E-A$ dominates or is dominated by A, the subset A of E is an interval of R.

4.2 The second proposition

For any $\mathrm{j}>\mathrm{ICi}$ and C j - are disjoint if the class R / Ci is a chain.

Proof:

If an element x exists in a C_{i} and a class C_{j}^{-}for $\mathrm{j}>\mathrm{i}$ then there exists $u \in C_{k}$ with $k>i$ such that $f x(u)$ belongs to the class $C_{h}{ }^{-}$with h_{i}.
Assume that initial $k=I+1$. The R / C_{i} class transforms into a chain, and the $R / C_{i}+1$ class is reconverted by a 3 -cycle, let A, which passes through u by the image of this 3-cycle A.

We have a contradiction when $f x$ is included in $C_{h}{ }^{-}$.
In reality, because $\mathrm{u} \in \mathrm{C}_{k}$ and $k>A$ for every $y C m$, with m I we obtain $\mathrm{R}(\mathrm{y}, \mathrm{u})=+$, which means that $\mathrm{fx}(\mathrm{y})$ belong to one class $\mathrm{C}_{\mathrm{n}}{ }^{-}$with n_{i}. Let $B\left(\right.$ or $\left.B^{-}\right)$be the case. The image of $A \cup B-x$ by f_{x} must be included in the B^{-}(resp. B^{-}) contradiction for the union of these classes of R (resp. R^{-}) of index i. Then $k>I+1$. Because all the $C_{i}+1$ dominating points result in a conflict on the cardinal of B - in this situation, the picture of $\mathrm{C}_{\mathrm{i}}+1$ must include B^{-}.

4.3 The Third proposition

$C_{i}^{-}=C_{i}$ if class R / C_{i} is a chain.

Proof:

The fact that each member x of C_{i} belongs to the class C_{j}^{-}with $j \leq i$ is shown above. There is no chain in the class R^{-} / C_{j}^{-}. In actuality, if we leave x, we won't disrupt any R by (-1)-hypo morphine cycles. Any cycle of R^{-}is unbreakable. The class C_{j}^{-}does not then include any cycles that pass via $x . R^{-} / C_{\mathrm{j}}^{-}$is not a chain then. For the class $C_{j}^{-}=\mathrm{I} \leq j$, we have $\mathrm{i}=\mathrm{j}, C_{j}^{-}=\mathrm{I} \leq j$ (proposition above).

4.4 The fourth proposition

If the relationship S is a 3-cycle, 4 -cycle, or M_{n} type. Consequently, S lacks an interval, where cardinal is equal to card $(s)-1$. The opposite, which is also a singleton, is an interval.

For example, the point that completely dominates the other or is dominated from the other, which implies that there is no such link.

4.5 The fifth proposition of $C_{1}=C_{1}^{-}$

Proof:

The conclusion of the corollary above shows that the first case $\mathrm{R} / \mathrm{C} 1$ is a chain. Whereas, the secondly case $\mathrm{R} / \mathrm{C} 1$ is not a chain.

In the $R / C 1$ is a 3-cycle, 4-cycle, or M_{n} in this situation. Let $x \in C 1$ Consider the limitation of R to $\mathrm{C}_{1}-\mathrm{x}$ and R^{-}to $C_{1}^{-}-x$ if $\mathrm{x} \notin C_{1}^{-}$. Via deleting x, we turn back at least three cycles in C 1 that go by x , but we still have $C_{1}^{-}-x=C_{1}^{-} . C_{1}-x$. When C_{1}-x's image by $f x$ becomes an interval dominant R-/E-x, it becomes an interval dominant R-/E-x as well. Due to the fact that C 1 - is an interval dominant $R^{-} / E-x, f x(\mathrm{C} 1 \mathrm{x})$ will contain in C_{1}^{-}then rigorously contain in C_{1}^{-}and finally $f x\left(C_{1}-x\right)$ will arrive an interval dominant R^{-} / C_{1}^{-}of cardinal equal card ($C_{1}^{-}-1$) contradiction with statement (4).

4.6 The sixth proposition $\forall \mathrm{i}: C_{i}=C_{i}$

Proof:
Using induction, we demonstrate that for $\mathrm{i}=1$, assuming that is true for all $\mathrm{j}<\mathrm{i}$ we place $C=C_{1}$ $\cup C_{2} \cup \ldots \ldots \cup C_{i-1}$ and $C^{-}=C_{1}^{-} \cup C_{2}^{-} \cup \ldots \ldots \ldots \cup C_{i-1}^{-}$
Next, we have $C=C^{-}$if R / C_{i} is a chain, then it follows from corollary 3 that it is also true if it is not a 3-cycle, 4-cycle, or $M_{n} . C \cup C_{i-x}$ is an interval dominating.

When $R / E-x$ is dominant, its image by $f x$ is an interval of $R / E-x$. When $R / E-x$ is dominant, its image by $f x$ is an interval of $R / E-x$ the interval dominant $\frac{R^{-}}{C^{-} \cup C_{1}^{-}-x}$
Because $R^{-} / E-x$ of Cardinal is likewise an interval dominant of $C^{-} \cup C_{1}^{-}-x$, which is at least equal to Cardinal $C \cup C_{i}-x$ If $x \notin C_{1}^{-}$.

If $\mathrm{x}=\mathrm{C} 1$, then $\mathrm{fx}(\mathrm{C})=\mathrm{C}$, and $\mathrm{fx}\left(\mathrm{C}_{\mathrm{i}}-\mathrm{x}\right)$ is strictly contained in $C_{1}^{-} . R^{-} / C_{i}^{-}$.
$C_{i}^{-}-1$ possesses an interval of cardinal equal to card C i-, which is inconsistent with the proposition (4)
R and R^{-}are isomorphic if R owns the relations A1, A2, A3, A4, and As as borns, R and R- are (-1) hypomorphes, and R and R^{-}are two relations of the same finite base E of cardinal >5.

5. Reference:

1. J.A. BONDY and R.L. HEMINGEX, Graph Reconstruction, A survey Journal of Graph
2. Theory Vol 1,2003, p227-268.
3. G. LOPEZ, C. RAUZY- La (n-4) Reconstructibilite Des Tournois De Cardinalite>g,
4. Comptes Rendus Du L'academie Des Sciences De Paris T. 306 serie 1, 1988, p. 639-642.
5. Suman, P., Bannaravuri, P. K., Baburao, G., Kandavalli, S. R., Alam, S., ShanthiRaju, M., \& Pulisheru, K. S. (2021). Integrity on properties of Cu -based composites with the addition of reinforcement: A review. Materials Today: Proceedings, 47, 6609-6613.
6. Kandavalli, S. R., Rao, G. B., Bannaravuri, P. K., Rajam, M. M. K., Kandavalli, S. R., \& Ruban, S. R. (2021). Surface strengthening of aluminium alloys/composites by laser applications: A comprehensive review. Materials Today: Proceedings, 47, 6919-6925.
7. Raja, R., Jegathambal, P., Jannet, S., Thanckachan, T., Paul, C. G., Reji, S., \& Ratna, K. S. (2020, November). Fabrication and study of Al6061-T6 reinforced with TiO2 nanoparticles by the process of friction stir processing. In AIP Conference Proceedings (Vol. 2270, No. 1, p. 030002). AIP Publishing LLC.
8. Kumar, B., \& Kumar, P. (2022). Preparation of hybrid reinforced aluminium metal matrix composite by using ZrB2: A systematic review. Materials Today: Proceedings.
9. Kandavalli, S. R., Khan, A. M., Iqbal, A., Jamil, M., Abbas, S., Laghari, R. A., \& Cheok, Q. (2023). Application of sophisticated sensors to advance the monitoring of machining processes: analysis and holistic review. The International Journal of Advanced Manufacturing Technology, 1-26.
10. Mourad, H. M., Kaur, D., \& Aarif, M. (2020). Challenges Faced by Big Data and Its Orientation in the Field of Business Marketing. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(3), 8091-8102.
11. Naidu, K. B., Prasad, B. R., Hassen, S. M., Kaur, C., Al Ansari, M. S., Vinod, R., ... \& Bala, B. K. (2022). Analysis of Hadoop log file in an environment for dynamic detection of threats using machine learning. Measurement: Sensors, 24, 100545.
12. J.W. MOON, Topics On Tournaments Holts Rinehart and Winston New York, 1968.
13. C. RAUZY, Morphologie De Relations Et Mot Interdits [En preparation], 2019.
14. P.SLEPIAN, Mathemtical foundations of Network Analysis, springer Tracts, verlag. Berlin, Heidelberg, New York 1998.
15. R.F Muirhead, some Methods Applicable Identities and Inequalities of symmetric Algebraic
16. Functions of n letters, Proc.Edindurgh Math.soc 2020.
