ISSN-2394-5125

VOL 10, ISSUE 04, 2023

(-1)-Reconstruction of the Decomposables

Solution of M_n

Prof.dr.Nihad Abduljalil University of WARITH AL-ANBIYA'A College of engineering / dep air conditioning and ref. <u>nihad.abduljalil@uowa.edu.iq</u> Zinah Nihad Abduljaleel University of Karbala Zenaalmosawy555@gmail.com

Abstract

The topic of reconstructing a relationship was raised in two different ways by S. Ulam (1960) and R. Fraise (1970). If the constraints R/E-X and R-/E-X are isomorphic for each element XE, then R and R are also isomorphic. The first falls under the weak hypotheses of E being a set and R, R being two relations with base E and the same arithema.

If the constraints R/X and R/X are isomorphic for each stringent portion X of E, then R and R are also isomorphic, according to the second assertion.

In this study, we demonstrate that the requirement is satisfied by the decomposable tournament Mn undergoing (-1) reconstruction.

 $R \ge A_1, A_2, A_{3,4}, A_5$ and $R > B_1, B_2, B_3, B_4$

Key words: decomposable Tournament, Reconstruction, Relation, 3-cycle, 4-cycle, Bounds, interval, isomorphic.

1.Introduction

We may represent the binary relation R as a dilation of a finite chain C. The points are therefore replaced with one of the following relations: We see that c has at least two points and differs from R whether it is a chain, 3-cycle, 4-cycle, or Mk. If |c|=2, we get two classes, C1 and C2, and the answers are as follows:

- One of such classes is a 4-cycle, whereas the other is either a 3-cycle or a 4-cycle.

- One is Mk, and the other is random [4] and [5].

If |c| is 3, then the answers are as follows:

One class is a 4-cycle, one is a 3-cycle or 4-cycle, and the others are 3-cycle, 4-cycle, or chains. Alternatively, one type is a Mk, while the others are 3-cycle, 4-cycle, chain, or Mk.

ISSN-2394-5125

VOL 10, ISSUE 04, 2023

We see that there is a decomposable solution that does not include Mn but rather all of the aforementioned solutions, at least one of which contains a 4-cycle.

2. Tournaments characterization of m_n

The tournaments m n are defined in such a way that m_n (i, j) = +if and only if i = j-1 or i = j+1. It should be noted that m_4 is a 4-cycle and m 3 is a 3-cycle.

These tournaments achieved the following success:

- m_n and its inverse are isomorphic.

- m_n cannot be decomposed.

- The number of 3-cycles that pass through the vertices 1, 2, 3,..., n is given by m_n .

Receptivity = $(1, 2, 3, 4, \dots 3, 2, 1)$.

3. The A_i bounds description [3] and [4]

Allow the base by removing a 3-cycle from $A = \{0, 1, 2, 3, 4\}$, we get:

A1: by substituting a three-cycle for one of the points.

A2: by replacing two points with a chain of two items each.

A3: by substituting a three-chain for one of the points.

A4: defined by = A4/ $\{i, i+1, i+2\}$ (i mod 5), isomorphic to 3-chain.

A5: A positive diamond defined by = $A5/\{0, 1, 2, 3\}$ when vertex equal to 0.

A5/{0, 1, 2, 3} can be a negative diamond when vertex 1, and A5 (2, 4) = +, the diamonds are formed by removing a 3-cycle one and only one of the chain's two points to form two components, 1, 2. (negative when it is equal to 2 and positive when the vertex is equal to 1)

Notice:

The Ai is also not deleted from the chain, as shown by B1 by the 4-chain, B1 and B2 by the 4-cycle, B3 by the positive diamond, and B4 by the negative diamond.

4. Theorem: R is solution of the problem $R \ge A_1$, A_2 , A_3 , A_4 , A_5 and $R > B_1$, B_2 , B_3 , B_4 .

Proof:

1- R > B1, B2, B3, B4, obviously if one of the classes is M_k . If none of the classes are M_k . In all circumstances, there are two classes, one of which embeds a 4-cycle and the other a 3-cycle, and we can prove that $\forall A : B_i < R$.

2. We have $R \ge A1, \dots, An$ assumed that Ai < R.

-Either A_i has only one point in each C_i , or A_i is a chain (which is impossible).

-or, A_i has at least two points, and at least one of C_i is not totally contained; in this case, A_i is a chain dilate (impossible). (Based on A_i 's description)

ISSN-2394-5125

VOL 10, ISSUE 04, 2023

Corollary:

R is the system solution, and $R \ge B1$, B2, B3, B4 and $R \ge B_1$, B_2 , B_3 , B_4 (-1). We know that the relation R is a dilatation of a chain C, and that each point of C may be replaced by a relation of base Ci, which is either a chain.

-A 3-cycle or a 4-cycle.

-A 4-cycle engine.

-One of the M_k .

According to Harary and Palmer's theorem, if the chain C has at least two points, R is not strong. [1]. It is known that any tournament with a cardinal greater than 4 is (1) constructible [2]. Then, if R is decomposable and has a cardinal greater than 4, R is (-1)-reconstructive. We will express the isomorphism, f between and R i, which means we must establish A = i=C i-. We write $\forall A = C_i = C_i^-$ the R decomposition is not unique, so we start with the provided decomposition and use the following approach to get the interval I of C. When a chain 1 cardinal of known 1 delates each point of i, these chains are classified as a single type. These maximum intervals are grouped so that each class Ci is either a 3-cycle, 4-cycle, or Mn; or chain, in which case C_{i-1} and C_{i+1} (if they exist) are not chains. a In order to investigate the isomorphism from R to R⁻, we consider R and R⁻ to be dilations of a chain C, with the points of C replaced by the classes C_i for R and C_i^- for R^- .

4.1 The first proposition

Every restriction of R of the kinds 3-cycle, 4-cycle, and M_n is entirely contained in one class of R, and the same is true for R^- .

Proof:

First, to prove that any 3-cycle belongs to one of the R classes it must done as follows:

If we have a, b $\in C_i$, and c $\in C_j$, with j \neq A, then we get R(c, a) \neq R(c, b), and it follows that R/C_i is not an interval.

If i, j or k are distinct S_i two a two such as $a \in C_i$, $b \in C_j$, $c \in C_k$, then C_i , C_j , and C_k are the three points of C's delate.

If there is a 3-cycle in C and C is not a chain, then each 3-cycle in R is entirely contained in the class C_i , and vice versa for R. Since the final two relations may be reconverted by the sequence $\Gamma_1, \Gamma_2... \Gamma_p$ each 3-cycle is totally contained in one class. p in such a way that $\Gamma_i \cap \Gamma_{i+1} \neq \varphi$, $\forall A$.

Corollary:

If R/C_i -x is a 3-cycle, 4-cycle, or M_n for all x and A, then $fx(C_i - x)$ is completely contained in R's class C_i^- of R^- .

Proof:

According to the above proposition 1, the image of a 3-cycle is a 3-cycle. which chains include a 3-cycle in the class C_i^- , a 4-cycle, and M_n . When R(x, y) = +, we say that x domains y.

ISSN-2394-5125 VOL 10, ISSUE 04, 2023

When each element of *A* dominates in R each element of B, the part A dominates the part B. When the portion A is dominant in R, it is complementary; when it is demonized in R, it is complementary.

Remark: If part *A* is dominant in *R*, there is no part B dominant in *R* with the same cardinal as part *A*. Specifically, when each element of *E*-*A* dominates or is dominated by *A*, the subset *A* of *E* is an interval of *R*.

4.2 The second proposition

For any j > I Ci and C j- are disjoint if the class R/Ci is a chain.

Proof:

If an element *x* exists in a C_i and a class C_j^- for j > i then there exists $u \in C_k$ with k > i such that $f_x(u)$ belongs to the class C_h^- with h_i .

Assume that initial k = I + I. The R/C_i class transforms into a chain, and the R/C_i+I class is reconverted by a 3-cycle, let A, which passes through u by the image of this 3-cycle A.

We have a contradiction when fx is included in C_h .

In reality, because $u \in C_k$ and k > A for every $y \ Cm$, with m I we obtain R (y, u) = +, which means that fx (y) belong to one class C_n^- with n_i . Let B (or B^-) be the case. The image of $A \cup B - x$ by f_x must be included in the B^- (resp. B⁻) contradiction for the union of these classes of R (resp. R^-) of index *i*. Then k > I + I. Because all the $C_i + I$ dominating points result in a conflict on the cardinal of B- in this situation, the picture of $C_i + 1$ must include B⁻.

4.3 The Third proposition

 $C_i = C_i$ if class R/C_i is a chain.

Proof:

The fact that each member x of C_i belongs to the class C_j^- with $j \le i$ is shown above. There is no chain in the class R^-/C_j^- . In actuality, if we leave x, we won't disrupt any R by (-1)-hypo morphine cycles. Any cycle of R⁻ is unbreakable. The class C_j^- does not then include any cycles that pass via x. R^-/C_j^- is not a chain then. For the class $C_j^- = I \le j$, we have i=j, $C_j^- = I \le j$ (proposition above).

4.4 The fourth proposition

If the relationship S is a 3-cycle, 4-cycle, or M_n type. Consequently, S lacks an interval, where cardinal is equal to card (s)-1. The opposite, which is also a singleton, is an interval.

For example, the point that completely dominates the other or is dominated from the other, which implies that there is no such link.

ISSN-2394-5125

VOL 10, ISSUE 04, 2023

4.5 The fifth proposition of $C_1 = C_1^-$

Proof:

The conclusion of the corollary above shows that the first case R/C1 is a chain. Whereas, the secondly case R/C1 is not a chain.

In the R/C1 is a 3-cycle, 4-cycle, or M_n in this situation. Let $x \in C1$ Consider the limitation of R to C_1 -x and R⁻ to $C_1^- \cdot x$ if $x \notin C_1^-$. Via deleting x, we turn back at least three cycles in C1 that go by x, but we still have $C_1^- \cdot x = C_1^-$. C_1 -x. When C_1 -x's image by fxbecomes an interval dominant R-/E-x, it becomes an interval dominant R-/E-x as well. Due to the fact that C 1- is an interval dominant $R^-/E - x$, fx (C1 x) will contain in C_1^- then rigorously contain in C_1^- and finally fx ($C_1 - x$) will arrive an interval dominant R^-/C_1^- of cardinal equal card ($C_1^- - 1$) contradiction with statement (4).

4.6 The sixth proposition \forall i : $C_i = C_i$ Proof:

Using induction, we demonstrate that for i = 1, assuming that is true for all j < i we place $C = C_1$ $\cup C_2 \cup \ldots \cup C_{i-1}$ and $C^- = C_1^- \cup C_2^- \cup \ldots \cup C_{i-1}^-$

Next, we have $C = C^-$ if R/C_i is a chain, then it follows from corollary 3 that it is also true if it is not a 3-cycle, 4-cycle, or M_n . $C \cup C_{i-x}$ is an interval dominating.

When *R/E-x* is dominant, its image by *fx* is an interval of *R/E-x*. When *R/E-x* is dominant, its image by *fx* is an interval of \vec{R} /*E-x* the interval dominant $\frac{R^-}{C^- \cup C_1^- - x}$

Because $R^{-}/E - x$ of Cardinal is likewise an interval dominant of $C^{-} \cup C_{1}^{-} - x$, which is at least equal to Cardinal $C \cup C_{i} - x$ If $x \notin C_{1}^{-}$.

If x = C 1, then fx(C) = C, and fx (C_i -x) is strictly contained in C_1^- . R^-/C_i^- .

 C_i^- 1 possesses an interval of cardinal equal to card C i-, which is inconsistent with the proposition (4)

R and *R*⁻ are isomorphic if *R* owns the relations A1, A2, A3, A4, and As as borns, R and R- are (-1) hypomorphes, and *R* and *R*⁻ are two relations of the same finite base *E* of cardinal >5.

5. Reference:

- 1. J.A. BONDY and R.L. HEMINGEX, Graph Reconstruction, A survey Journal of Graph
- 2. Theory Vol 1,2003, p227-268.
- 3. G. LOPEZ, C. RAUZY- La (n-4) Reconstructibilite Des Tournois De Cardinalite>g,
- 4. Comptes Rendus Du L'academie Des Sciences De Paris T.306 serie 1, 1988, p. 639-642.

ISSN-2394-5125

VOL 10, ISSUE 04, 2023

- Suman, P., Bannaravuri, P. K., Baburao, G., Kandavalli, S. R., Alam, S., ShanthiRaju, M., & Pulisheru, K. S. (2021). Integrity on properties of Cu-based composites with the addition of reinforcement: A review. *Materials Today: Proceedings*, 47, 6609-6613.
- Kandavalli, S. R., Rao, G. B., Bannaravuri, P. K., Rajam, M. M. K., Kandavalli, S. R., & Ruban, S. R. (2021). Surface strengthening of aluminium alloys/composites by laser applications: A comprehensive review. *Materials Today: Proceedings*, 47, 6919-6925.
- Raja, R., Jegathambal, P., Jannet, S., Thanckachan, T., Paul, C. G., Reji, S., & Ratna, K. S. (2020, November). Fabrication and study of Al6061-T6 reinforced with TiO2 nanoparticles by the process of friction stir processing. In *AIP Conference Proceedings* (Vol. 2270, No. 1, p. 030002). AIP Publishing LLC.
- 8. Kumar, B., & Kumar, P. (2022). Preparation of hybrid reinforced aluminium metal matrix composite by using ZrB2: A systematic review. *Materials Today: Proceedings*.
- Kandavalli, S. R., Khan, A. M., Iqbal, A., Jamil, M., Abbas, S., Laghari, R. A., & Cheok, Q. (2023). Application of sophisticated sensors to advance the monitoring of machining processes: analysis and holistic review. *The International Journal of Advanced Manufacturing Technology*, 1-26.
- 10. Mourad, H. M., Kaur, D., & Aarif, M. (2020). Challenges Faced by Big Data and Its Orientation in the Field of Business Marketing. *International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)*, 10(3), 8091-8102.
- Naidu, K. B., Prasad, B. R., Hassen, S. M., Kaur, C., Al Ansari, M. S., Vinod, R., ... & Bala, B. K. (2022). Analysis of Hadoop log file in an environment for dynamic detection of threats using machine learning. *Measurement: Sensors*, 24, 100545.
- 12. J.W. MOON, Topics On Tournaments Holts Rinehart and Winston New York ,1968.
- 13. C. RAUZY, Morphologie De Relations Et Mot Interdits [En preparation], 2019.
- 14. P.SLEPIAN, Mathemtical foundations of Network Analysis, springer Tracts, verlag. Berlin, Heidelberg, New York 1998.
- 15. R.F Muirhead, some Methods Applicable Identities and Inequalities of symmetric Algebraic
- 16. Functions of n letters, Proc.Edindurgh Math.soc 2020.