JOURNAL OF CRITICAL REVIEWS

Some Results on Bivalent Table

By prof Dr. Nihad AbdulJalil
University of Warith Al-Anbiya'a
College of Engineering / Dep. Air Conditioning and Ref
\section*{Nihad.abduljalil@uowa.edu.iq}

Abstract

: A discrepancy on the issue was uncovered in this paper. For any two-valued table with a limited number of rows and columns. T is p-extensive for an arbitrarily large number of numbers P , and is it also q -extensive for all integers q bigger than P? [1][7]

Key words:

bivalent table, extensive, embeddability, bad ordered pair, p-extensive.

1- Introduction:

A bivalent table is a system consisting of two distinct sets, E and F , and a function that assigns a positive or negative value to each member in the cartesian product ExF.

1- If we are suppose two tables, T on ExF and T^{\prime} on E'X F', then we say that T T' if there certainly is an injection e through E into E^{\prime} and an injection f from F into F^{\prime} such that $T^{\prime}(e x, f y)=T(x, y)$ for every x in E and y in F. [4] [2]

2- If there exists a table $\mathrm{X}+$ formed from X by inserting a row, then T is said to be extended by X relative to rows if and only if $\mathrm{T} X+$. In contrast, T is inextensive by X (relative to rows) if T X but $\mathrm{T} \mathrm{X}+$ for every $\mathrm{X}+$ derived
from X by adding a row. A table T with two columns (below, left) is inextensive by a table X with four columns (below, right) with respect to the number of rows[3][5]:

+	+	+	-	+	+
-	-	+	-	+	-
+	-	+	-	-	-
+	-	-	+	-	+

As a preliminary observation, it is obvious that there is a contradiction when trying to embed T in the second and fourth columns of X , as adding ++ to the third and fourth columns necessitates adding - to the second column (due to the second and third columns). Since T is embedded in the first and third columns, adding - to them would result in a contradiction unless you also added + to the first column (since the first and fourth columns already had -added to them).

3-If a table T is extensive for every table with p rows, then we conclude that T is p -extensive (p is a natural integer). That is, for each table X with p rows and such that $\mathrm{T} X$, there exists a table $\mathrm{X}+$ (resulted from X by inserting a row) that likewise honors the non-embeddability TX+. When it comes to rows, [6] T is considered to be extensive if and only if it is extensive by all tables, and inextensive otherwise.

There must be at least two identical rows, a row with a (+), a row with a (-), and a row with a (-). In the case of the example T with two columns and four rows shown above, this holds true.

The Issue. Do an infinite number of integers p exist such that T is p extensive, and does an integer p exist such that T is q-extensive, for any integer q bigger than p ? This question is asked for every finite (i.e., with a finite set of rows and columns) bivalent table.[2]We assume a

JOURNAL OF CRITICAL REVIEWS

D.R.Fulkerson-style cartesian product Ex F, with Card F5, and inextensive by X tables, where T is a table.

If we remove any column from the set E of columns, then there exists an $\mathrm{X}+$ formed from X by adding a row in which T is no longer embeddable, then we may insist that E is minimum. Therefore, each column is unique (since the two columns of T are also unique), and each column has both a (+) and a $(-)$ in it. If there were only (+) columns, for example, adding another (+) to that column wouldn't make it possible to embed T .

If T can be embedded in the table with two columns a, b completed by the values $\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{b})$, where a and b are ordered pairs, then the ordered pair $(\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{b}))$ is bad for (a, b). There are only five options when given the two columns a and b. If (-,-) and twice (,+-) or twice $(-,+)$ are rows in (a, b), then the only undesirable pair for (a, b) is either $(+,+)$ or $(-,-)$ and twice $(+,-)$. You may either assume that $(+,-)$ is the only terrible pair, or that $(+,-)$ is the only bad (ordered) pair, or that $(-,+)$ is the only bad pair, or that $(+,-)$ and $(-,+)$ are both bad pairings. It follows immediately that a two-column version of table X cannot give way to the inextensivity of table T.

Proposition:

Given three columns (a, b, c), it is impossible for $(+,+)$ to be detrimental to (a, b) and $(-,-)$ to be detrimental to $(\mathrm{b}, \mathrm{c})[8]$

Assume, in fact, that the three columns are separate and that each column has a minimum of one $(+)$ and one $(-)$. A first row with $(-,-)$ for (a, b) must exist (because $(+,+)$ is undesirable). Since $(-,-)$ is already present in (b,c), there is no way for (,--) to be a bad pair for (b,c); so, our initial row is (,,--+). Similarly, we have a second row that reads (-), (+), and (+) for b, c, and a, respectively. Given that a must be present in columna, we get a third row with $(+)$ for $\mathrm{a},(-)$ for b , and $(+)$ for C : hence, $(+),(-),(+)$. Similarly, c must
have a $(-)$ in it, making $(-),(+),(-)$ our fourth row. Finally, T is nested in the rows (a,c), which is a contradiction.

It follows from the above statement that X cannot decrease to three columns (assumed to be distinct and to include (+) and (-)) if we demand that T be inextensive by X . As an example, if T is inextensive by x , then there must be at least one bad pair $(+,+)$ and one bad pair (-;-) in order for the assertion to be false.

References:

M. Aigner, combinatrial theory sprihger 2004.
D.R. Fulkerson, zero-one matrices with zero. Trace pacific.J. math 2016.
C. Genanovo. Abritement entre relations et specialement entre chains, sympos 2017

Suman, P., Bannaravuri, P. K., Baburao, G., Kandavalli, S. R., Alam, S., ShanthiRaju, M., \& Pulisheru, K. S. (2021). Integrity on properties of Cu -based composites with the addition of reinforcement: A review. Materials Today: Proceedings, 47, 6609-6613.

Kandavalli, S. R., Rao, G. B., Bannaravuri, P. K., Rajam, M. M. K., Kandavalli, S. R., \& Ruban, S. R. (2021). Surface strengthening of aluminium alloys/composites by laser applications: A comprehensive review. Materials Today: Proceedings, 47, 6919-6925.

Sharma, Nisha, Anil Kumar Yadava, Mohd Aarif, Harishchander Anandaram, Ali Alalmai, and Chandradeep Singh. "Business Opportunities And Challenges For Women In The Travel And Tourism Industry During Pandemics Covid-19." Journal of Positive School Psychology (2022): 897-903.

Raja, R., Jegathambal, P., Jannet, S., Thanckachan, T., Paul, C. G., Reji, S., \& Ratna, K. S. (2020, November). Fabrication and study of Al6061-T6 reinforced with TiO 2 nanoparticles by the process of friction stir processing. In AIP Conference Proceedings (Vol. 2270, No. 1, p. 030002). AIP Publishing LLC.

Kumar, B., \& Kumar, P. (2022). Preparation of hybrid reinforced aluminium metal matrix composite by using ZrB2: A systematic review. Materials Today: Proceedings.

Kandavalli, S. R., Khan, A. M., Iqbal, A., Jamil, M., Abbas, S., Laghari, R. A., \& Cheok, Q. (2023). Application of sophisticated sensors to advance the monitoring of machining processes: analysis and holistic review. The International Journal of Advanced Manufacturing Technology, 1-26.

Abd Algani, Y. M., Ritonga, M., Kiran Bala, B., Al Ansari, M. S., Badr, M., \& Taloba, A. I. (2022). Machine learning in health condition check-up: An approach using Breiman's random forest algorithm. Measurement: Sensors, 23, 100406. https://doi.org/10.1016/j.measen.2022.100406

Mourad, H. M., Kaur, D., \& Aarif, M. (2020). Challenges Faced by Big Data and Its Orientation in the Field of Business Marketing. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(3), 8091-8102.

Aarif, Mohd. "A STUDY ON THE ROLE OF HEALTHCARE INDUSTRY IN THE PROMOTING OF HEALTH TOURISM IN INDIA." A CASE STUDY OF DELHI-NCR (2018).

JOURNAL OF CRITICAL REVIEWS

Naidu, K. B., Prasad, B. R., Hassen, S. M., Kaur, C., Al Ansari, M. S., Vinod, R., ... \& Bala, B. K. (2022). Analysis of Hadoop log file in an environment for dynamic detection of threats using machine learning. Measurement: Sensors, 24, 100545.

Ravikumar, K., Chiranjeevi, P., Manikanda Devarajan, N., Kaur, C., \& Taloba, A. I. (2022). Challenges in internet of things towards the security using deep learning techniques. Measurement: Sensors, 24, 100473. https://doi.org/10.1016/j.measen.2022.100473
S. Pemmaraju and S.skiena. computational discrete mathematics - combinationics and graph theory with mathematical Handcover cabridge unviersity U.K 2013.
B.Roy, Algebre moderne et theorie des graphes, thesis, university of Paris 2012.
J.H Schmeri, W.T. trotter and acitically indecomposable partially ordered set. Graphs tournaments and other Binary relational stupuctures, Aiscret math 1131993.
P.SLEPAIN, Mathematical Foundations of network analysis, springer tracts, verlag, Berlin, Heidelberg, New York 1998.
R.F. Muirhead, some methods applicable to Identities and inequalities of symmetric Algebraic functions of n letters. Froc. Edinburgh math. Soc 2020.

