ISSN- 2394-5125 VOL 7, ISSUE 04, 2020

UNIFORMITY G.D. Singh

Dept. of Mathematics, H. D. Jain College, Ara, V.K.S. University, Ara, Bihar, India

ABSTRACT

In this paper we have studied that a uniform topology induced by a uniform structure on a set is also a topology on the set. Further investigations were carried out to establish the uniform structure which has basically induced a usually topology on the real line R_1 .

Keywords : Uniformity, Uniform topology, Uniform structure, product uniformity, topological space, Hausedorff space, metric space

1. INTRODUCTION

The theory of uniform spaces on a non-empty set X has been constructed by A. Weil (1935) [1] in terms of subsets of $X \times X$. J.W. Tukey (1940) [2] later provided as alternative description of a uniform structure using covers of X. After them Bourbaki (1951) [3] defined the uniform space by a certain system of neighbourhoods of diagonal of square $X \times X$. The very general Csaszar (1960) [4] defined the uniform space by a certain ordering of set of all subsets of X. The natural notions of completeness and full-boundness (pre-compactness) are equivalent to the corresponding metric properties for metric space.

2. PRELIMINARIES

In this section we will recall some concepts of uniform spaces.

Definition 2.1. Let X, Y be two sets. If two each element $x \square \square X$ one can associate one and only one element of Y by some law, then this association is called a *mapping* of X into Y. **Definition 2.2.** Let X be a non-empty set. A collection of subsets of τ is of subsets of X into be a *topology* on X if the following conditions hold: (i) \square , X $\square \square \square \square$

(ii)
$$\{U_{\Box\Box}\} \stackrel{\wedge}{\frown} \Box \Box \Box []:A \stackrel{\cup}{\Box} \Box \Box \Box'U \Box \Box \Box$$
 (iii)
 $\bigcup U U_1, {}_2\Box \Box \Box U U_1 {}_2\Box \Box.$

The order pair (X, \Box) is called a *topological space*. Each member U of $\Box\Box$ in a Topological space (X, \Box) , is called an *open set*. The complement of an open set with respect to X is called a closed set.

Definition 2.3. Let (X, \Box) be a topological spaces and let $x \Box \Box X$. A subset *P* of *X* is said to be a *neighbourhoods* of *X* if there exist an open set $U\Box\Box X$ such that $x\Box\Box U\Box\Box P$.

Definition 2.4. Let (X, \Box) be a topological space. *A* be a open set of *X*, a point *x* is said to be a *limit point* of *A* if for all open set *U* containing *x*

$$A \cap \Box (U - \{x\}) \Box \Box \Box.$$

Here x may or may not be a member of A.

Definition 2.5. Let (X, \Box) be a topological space. A subfamily $\Box \Box \circ f \Box \Box$ is said to be a *base* of $\Box \Box$ if for each $x \Box \Box X$ and each U in $\Box \Box$ such that $x \Box \Box U$ there exist a B in $\Box \Box$ such that $x \Box \Box B$ $\Box \Box U$, then $\Box \Box$ is said to be a *base* of \Box .

A subfamily $\Box \Box of \Box \Box$ is said to be a *sub base* of $\Box \Box$ if the family consisting of the finite intersection of sets in $\Box \Box$ is a base of \Box .

ISSN- 2394-5125 VOL 7, ISSUE 04, 2020

Definition 2.6. Let *X* be a set. Let *d* be a real valued function define on the product $X \square \square X$ such that

- (i) $d(x, y) \square \square 0$, and = 0 iff x = y;
- (ii) d(x, y) = d(x, y);

(iii) $d(x, y) \square \square d(x, z) + d(z, y)$, x, y, z $\square \square X$ (triangular inequality).

Such a function d is said to be semi metric or *pseudometric* and X together with d is written as (x, d) is called a *semi metric* space. If d satisfies only (i) and (iii) then d is called a *quasimetric* and (X, d) is called *quasimetric* space.

If, in addition d(x, y) = 0 iff x = y, then d is called a metric, and X together with d i.e., is called *metric space*.

Definition 2.7. T_0 space. A topological space is said to be T_0 -space, if T_0 separation axiom satisfied i.e., for any distinct point x, $y \square X$, there exist an open set containing one of them but not the other i.e., $\square U \square \square \square$ such that, $x \square \square U$ and $y \square \square U$ or $y \square$, $x \square \square U$

Definition 2.8. T_1 space: A topological space is $(X, \Box\Box)$ is said to be a T_1 -space if T_1 separation axiom satisfied i.e., for any two distinct points $x, y \Box X$, there exist open sets U and V, where $x \Box\Box U, y \Box\Box U$ or $y \Box\Box V, x \Box\Box V$.

Definition 2.9. T_2 -space or Hausedorff space: A topological space is $(X, \Box\Box)$ is said to be a T_2 -space or Hausedorff space if T_2 separation axiom satisfied i.e., for any two distinct points $x, y \Box\Box X$, there exist open sets U and V, such that $x\Box\Box V, y \Box\Box V, U \Box\Box V = \Box\Box$.

Definition 2.10. *Regular space*: A topological space is $(X, \Box\Box)$ is said to be *regular* if for any closed set *F* and for any $x \Box\Box F$ there exist open sets *U* and *V* such that $x \Box\Box U$, $F \Box\Box V$ and $U \Box\Box V = \Box$.

3. UNIFORMITY AND TOPOLOGY

Now we see that uniformity for a set *E* defines a topology.

Definition 3.1. Let $(E, \{U\})$ be a uniform space. The topology defined by the uniformity $\{U\}$ is the collection of all subsets *T* of *E* such that for each $x \square T$ there is a $U \square \{U\}$ with

 $U[x] = \{ y \square E : (x, y) \square U \} \square T.$

That the collection T of all subsets T of E satisfying the condition in the above definition does indeed define a topology is a simple matter of verification.

The relevant information concerning the open and closed subsets of the topology defined by a uniformity is given in the following:

Theorem 3.2. Let $(E, \{U\})$ be uniform space and Let *T* be the topology on *E* defined by $\{U\}$. (i) If $\{B\}$ is a base (or sub base) of the uniformity $\{U\}$, then the family U[x], where *U* runs over $\{B\}$ is a base (or sub base) of the neighbourhood filter of *x*. Hence each $x \square E$ has a base of neighbourhood filters, each member of which is symmetric (i.e., when *U* in $\{U\}$ is symmetric).

(ii) If A° is the *T*-interior of a subset $A \square E$, then $A^{\circ} = \{x \square E : \text{ for some } U \square U, U[x] \square A\}$.

(iii) If A is the **T**-closure of $A \square E$, then $A \cup A \cup A \square \{ []: \square \}$.

Proof. (i) If *B* be a base (or sub base) for the uniformity U, then for each $x \Box E$, the family $\{U[x]\}$, where *U* runs over U, forms a base (or sub base) for the neighbourhood filter of *x*. Consequently the symmetric neighbourhoods U[x] form a base of the neighbourhood filter of *x* and $U[x] \cap U^{-1}[x]$ is a symmetric neighbourhood of *x*.

ISSN- 2394-5125 VOL 7, ISSUE 04, 2020

(ii) Put $B = \{x \square E: \text{ for some } U \square U, U[x] \square A\}$. Then for each $x \square B$, there exists $U \square U$ such that $U[x] \square B$. Also there exists $V \square U$ such that $V^2 = V \circ V \square U$. To show that $V[x] \square B$, let y

 $\Box V[x]$. Then $V[y] \Box V^2][x] \Box U[x] \Box A$. Hence $y \Box B$. But since V[x] is T open. It is now clear that each T-open subset C of A is contained in B since C contains a subset of the type U[x]. Hence $B = A^\circ$.

(iii) $x A \square$ if and only if, for each $U \square U$, $U[x] \cap A \square \square$ if and only if $x \square U^{-1}$. Since $U \square U$ contains a symmetric member, it follows that $x A \square$ if and only if $x \square U[A]$ for each $U \square U$. Therefore, $A U A U \square \{ []: \square U \}$. **4. PRODUCT TOPOLOGY**

Definition 4.1. Just as the Cartesian product of topological spaces can be given a topology so the Cartesian product of uniform spaces can be given uniformity. Specially, let $\{E_j\}$ be a family of uniform spaces. We consider the Cartesian product $E = \Box E_j$. We identify $E \times E$ with the Cartesian product $\Box (E_j \times E_j)$. Now take the Cartesian product $\Box U_j$, where $U_j \Box E_j \times E_j$ for each index *j*, as a subset of $E \times E$. Now consider the family of subsets of $E \times E$ consisting of the restricted product set $\Box U_j$, where U_j is an entourage of E_j for each index *j*. This family constitutes a base for a uniformity, is called the *product uniformity*, and *E*, with this uniformity, is called the *uniform product*.

5. UNIFORMITY AND SEPARATION AXIOMS

We have seen that how a uniformity on E^2 induces a topology on E and how the product topology on E^2 is define by the topology on E. It is natural to expect some relation between the uniformities and the separation axioms define for the associated topologies.

Theorem 5.1. Let (E, \mathbf{U}) be a topological space, where the topology induced by a uniformity U. Then (E, \mathbf{U}) is a T_3 -space. Hence if (E, \mathbf{U}) is a T_1 -space, then (E, \mathbf{U}) is regular.

Proof. Let $x \square E$. For each neighbourhood U[x] of x, there exist a V of U such that $V \circ V \square U$. Then $V[x] \square (W \vee x W]$:: $\square U$ } is a closed neighbourhood of x and $V[x] U[] \square$ []. By characterization of regular spaces it follows that (E, U) is a T_3 -space.

Now to show remaining proof let us go to the following theorem.

Theorem 5.2. Let (E, \mathbf{U}) be a uniform space and let u be the topology define by \mathbf{U} on E. The following are equivalent

(i) (E, \mathbf{U}) is a T_1 space;

(ii) (E, \mathbf{U}) is a Hausdorff space;

(iii) $\cap \{U : U \square \mathbf{U}\} = \square$, the diagonal set. (iv) (E, \mathbf{U}) is regular.

Proof. We first show (iv) \Box (ii)

Let $x, y \square E, x \square y$. By hypothesis x has an open neighbourhood U which does not contain y. Then by regularity there exist a open neighborhood V of x such that $x \lor V \lor U \square \square \square$. Since y does not contain in U, it follows that $y \lor U \square$... This shows that $y \vDash V \square \setminus ...$ Since $V(E \lor V) \square \square$ and $V, E \lor V$ are open neighborhood of x and y respectively, this proves that E is a Hausedorff space.

So we have (E, \mathbf{U}) is Hausedorff space.

Now by separation axiom we have directly that a Hausedorff space is T_1 -space. That has been proved.

So (i) \Box (iv) by above theorem. Hence (i) \Box (ii) \Box (iv).

ISSN- 2394-5125 VOL 7, ISSUE 04, 2020

REFERENCES

- [1] Weil, A., Sur les espaces a structures uniforme. Paris, 1937.
- [2] Tuckey, Y., Convergence and Uniformity in Topology. Princeton, 1940.
- [3] Bourbaki, N., Topologie générale. Actualités Sei. Ind. No. 858. Paris, 1951. [4] Csaszar, A. Fondements de la topologie générale. Budapest, 1960.