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ABSTRACT  

In this paper we have studied that a uniform topology induced by a uniform structure on a set 

is also a topology on the set. Further investigations were carried out to establish the uniform 

structure which has basically induced a usually topology on the real line R1.  
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1. INTRODUCTION  

The theory of uniform spaces on a non-empty set X has been constructed by A. Weil (1935) 

[1] in terms of subsets of X × X. J.W. Tukey (1940) [2] later provided as alternative 

description of a uniform structure using covers of X. After them Bourbaki (1951) [3] defined 

the uniform space by a certain system of neighbourhoods of diagonal of square X × X. The 

very general Csaszar (1960) [4] defined the uniform space by a certain ordering of set of all 

subsets of X. The natural notions of completeness and full-boundness (pre-compactness) are 

equivalent to the corresponding metric properties for metric space.   

2. PRELIMINARIES  

In this section we will recall some concepts of uniform spaces.  

Definition 2.1. Let X, Y be two sets. If two each element x X one can associate one and 

only one element of Y by some law, then this association is called a mapping of X into Y. 

Definition 2.2. Let X be a non-empty set. A collection of subsets of τ is of subsets of X into 

be a topology on X if the following conditions hold: (i) , X  

(ii) {U }    [ ]:A   U  (iii) 

U U1, 2   U U1 2 .  

The order pair (X, ) is called a topological space. Each member U of in a Topological 

space            (X, ), is called an open set. The complement of an open set with respect to X is 

called a closed set.  

Definition 2.3. Let (X, ) be a topological spaces and let x X. A subset P of X is said to be 

a neighbourhoods of X if there exist an open set U X such that x U P.  

Definition 2.4. Let (X, ) be a topological space. A be a open set of X, a point x is said to be a 

limit point of A if for all open set U containing x  

  A ∩ (U – {x}) .  

Here x may or may not be a member of A.  

Definition 2.5. Let (X, ) be a topological space. A subfamily of is said to be a base of 

if for each x X and each U in such that x U there exist a B in such that x B 

U, then is said to be a base of .  

A subfamily of is said to be a sub base of if the family consisting of the finite 

intersection of sets in is a base of .  
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Definition 2.6. Let X be a set. Let d be a real valued function define on the product X X 

such that  

(i) d(x, y) 0, and = 0 iff x = y;  

(ii) d( x, y) = d(x, y);  

(iii) d(x, y) d(x, z) + d(z, y), x, y, z X ( triangular inequality).  

Such a function d is said to be semi metric or pseudometric and X together with d is written 

as (x, d) is called a semi metric space. If d satisfies only (i) and (iii) then d is called a 

quasimetric and (X, d) is called quasimetric space.  

If, in addition d(x, y) = 0 iff x = y, then d is called a metric, and X together with d i.e., is called 

metric space.  

Definition 2.7. T0  space. A topological space is said to be T0-space, if T0 separation axiom 

satisfied i.e., for any distinct point x, y X, there exist an open set containing one of them but 

not the other i.e., U such that, x U and y U or y , x U  

Definition 2.8. T1 space: A topological space is (X, ) is said to be a T1- space if T1 

separation axiom satisfied i.e., for any two distinct points x, y X, there exist open sets U and  

V, where x U, y U or y V, x V.  

Definition 2.9. T2-space or Hausedorff space: A topological space is (X, ) is said to be a 

T2-space or Hausedorff space if T2 separation axiom satisfied i.e., for any two distinct points  

x, y X, there exist open sets U and V, such that x V, y V, U V = .  

Definition 2.10. Regular space: A topological space is (X, ) is said to be regular if for any 

closed set F and for any x F there exist open sets U and V such that x U, F V and U 

V = .  

3. UNIFORMITY AND TOPOLOGY  

Now we see that uniformity for a set E defines a topology.   

Definition 3.1. Let (E, {U}) be a uniform space. The topology defined by the uniformity {U} 

is the collection of all subsets T of E such that for each x  T there is a U {U} with   

  U[x] = {y  E : (x, y)  U }  T.  

That the collection T of all subsets T of E satisfying the condition in the above definition does 

indeed define a topology is a simple matter of verification.  

The relevant information concerning the open and closed subsets of the topology defined by a 

uniformity is given in the following:  

Theorem 3.2. Let (E, {U}) be uniform space and Let T be the topology on E defined by {U}. 

(i) If {B} is a base (or sub base) of the uniformity {U}, then the family U[x], where U runs 

over {B} is a base (or sub base) of the neighbourhood filter of x. Hence each x  E has a base 

of neighbourhood filters, each member of which is symmetric (i.e., when U in {U} is 

symmetric).  

(ii) If Ao is the T-interior of a subset A  E, then Ao = {x  E : for some U  U, U[x]  A}.  

(iii) If A is the T-closure of A  E, then A U A U A  { [ ]:  }.  

Proof. (i) If B be a base (or sub base) for the uniformity U, then for each x  E, the family 

{U[x]}, where U runs over U, forms a base (or sub base) for the neighbourhood filter of x. 

Consequently the symmetric neighbourhoods U[x] form a base of the neighbourhood filter of 

x and U[x] ∩ U-1[x] is a symmetric neighbourhood of x.  
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(ii) Put B = {x  E: for some U  U, U[x]  A}. Then for each x  B, there exists U  U 

such that U[x]  B. Also there exists V  U such that V2 = V o V  U. To show that V[x]  B, 

let y  

 V[x]. Then V[y]  V2][x]  U[x]  A. Hence y  B. But since V[x] is T open. It is now clear 

that each T-open subset C of A is contained in B since C contains a subset of the type U[x]. 

Hence B = Ao.  

(iii) x A  if and only if, for each U  U, U[x] ∩ A   if and only if x  U-1. Since U  U 

contains a symmetric member, it follows that x A  if and only if x  U[A] for each U  U. 

Therefore, A U A U  { [ ]: U}. 4. PRODUCT TOPOLOGY  

Definition 4.1. Just as the Cartesian product of topological spaces can be given a topology so 

the Cartesian product of uniform spaces can be given uniformity. Specially, let {Ej} be a 

family of uniform spaces. We consider the Cartesian product E =  Ej. We identify E × E 

with the Cartesian product  (Ej × Ej). Now take the Cartesian product  Uj, where Uj  Ej × 

Ej for each index j, as a subset of E × E. Now consider the family of subsets of E × E 

consisting of the restricted product set  Uj, where Uj is an entourage of Ej for each index j. 

This family constitutes a base for a uniformity, is called the product uniformity, and E, with 

this uniformity, is called the uniform product.  

5. UNIFORMITY AND SEPARATION AXIOMS  

We have seen that how a uniformity on E2 induces a topology on E and how the product 

topology on E2 is define by the topology on E. It is natural to expect some relation between 

the uniformities and the separation axioms define for the associated topologies.  

Theorem 5.1. Let (E, U) be a topological space, where the topology induced by a uniformity 

U. Then (E, U) is a T3-space. Hence if (E, U) is a T1-space, then (E, U) is regular.  

Proof. Let x  E. For each neighbourhood U[x] of x, there exist a V of U such that V o V  U. 

Then V x[ ]  {W V x W[ ]: U} is a closed neighbourhood of x and V x U x[ ]  [ ]. By 

characterization of regular spaces it follows that (E, U) is a T3-space.  

Now to show remaining proof let us go to the following theorem.  

Theorem 5.2. Let (E, U) be a uniform space and let u be the topology define by U on E. The 

following are equivalent  

(i) (E, U) is a T1 space;  

(ii) (E, U) is a Hausdorff space;  

(iii) ∩ {U : U  U} = , the diagonal set. (iv) (E, U) is regular.  

Proof. We first show (iv)  (ii)  

Let x, y  E, x  y. By hypothesis x has an open neighbourhood U which does not contain y. 

Then by regularity there exist a open neighborhood V of x such that x V V U    . Since y 

does not contain in U, it follows that y V  .. This shows that y E V  \ .. Since V (E V\ )  and 

V, E\V are open neighborhood of x and y respectively, this proves that E is a Hausedorff 

space.  

So we have (E, U) is Hausedorff space.  

Now by separation axiom we have directly that a Hausedorff space is T1-space. That has been 

proved.  

So (i)  (iv) by above theorem. Hence (i)  (ii)  (iv).  
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