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ABSTRACT 

The aim of hybrid methods in simulations is to communicate regions with disparate time and 

length scales. In this case, an inner area P with atomistic fluid description and an outer region C 

with continuum fluid dynamics description are connected. Over an overlapping region, the two 

descriptions of matter are matched. Consists of a two-way coupling system (C→P and P→C) 

that transmits fluxes of mass, momentum, and energy. The hybrid system that is given here 

makes two contributions. It first deals with erratic flows and, more crucially, with energy transfer 

between the C and P areas. Using stable and unsteady flows with various rates of mass, 

momentum, and energy exchange, the C→P coupling is evaluated here. Since they include all 

hydrodynamic modes, relaxing flows represented by linear hydrodynamics—including 

transverse and longitudinal waves—are the most illuminating. The cell-averaged Fourier 

components of the flow variables in the P region—velocity, density, internal energy, 

temperature, and pressure—evolve in excellent agreement with the hydrodynamic trends when 

the hybrid coupling scheme is used following the commencement of an initial disturbance. 

Additionally, it is demonstrated that the method maintains the proper rate of entropy creation. 

We go through some broad specifications for the coarse-grained length and temporal scales that 

result from the distinctive microscopic and hydrodynamic scales. 

Keywords: coupling system, particle dynamics, fluid phase 

 

INTRODUCTION 

A fine interaction between the slow dynamics in the system's bulk and the atomistic processes 

that take place in a tiny portion of the system governs a broad variety of systems with significant 

applications. Polymers or colloids at surfaces, wetting, drop formation, melting, crystal 

development from a fluid phase, and moving interfaces of immiscible fluids or membranes are 

only a few examples of the numerous instances that emerge in complex flows near interfaces. 

Such studies call for new algorithms that can maintain the benefits of the atomistic description of 

matter where it is really needed while treating the majority of the system by much less expensive 

continuum fluids because the computational cost of realistic-size simulations of these problems 

via standard molecular dynamics (MD) is prohibitive. In recent literature, a number of hybrid 
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algorithms of this type have been presented. These hybrid systems often combine the particle 

region P and the continuum region C via an overlapping region made up of the two buffers C→P 

and P→C, which take into consideration the two-way transmission of information from C to P. 

With just the restricted prescription from the C area as input, one must rebuild the dynamics of a 

huge collection of particles at C→P, whereas the P→C transfer effectively entails a coarse-

graining technique. Additionally, it is important to incorporate as few non-physical artifacts—

such as Maxwell demons—as feasible when completing this re construction. The essential 

component of any hybrid design, this Endeavour is quite challenging. Fluids hybrid algorithms 

are a relatively new development. The elegant technique for rarefied gases developed by Garcia 

et al. [1] connects fluxes from a direct simulation Monte Carlo (DSMC) scheme to a different 

area that is characterized by computational fluid dynamics (CFD). An adaptive mesh refinement 

hierarchy is utilized, with a CFD semi-implicit solver being used at the finer grid sizes. The 

DSMC is established at these scales. An MD-continuum liquid description may theoretically be 

used to construct the scheme, but in that case the C solver would have to be entirely explicit to 

prevent having to modify the particle's energy during the iterations of the implicit scheme. Due 

to the challenges brought on by the inter particle interactions, the state of the art is comparatively 

less developed when it comes to liquids. O'Connell and Thompson's groundbreaking work @2# 

linked momentum by imposing the local continuum velocity at C→P through an unrefined 

restriction. Dynamic Lagrangian theory. The P region in this illustration is close to a physical 

surface that is depicted by the rightmost shaded area. At some distance from the surface, the 

continuum zone extends into the area to the left. In the overlapped region, particle-averaged 

fluxes are introduced into the C flow in a P→C cell and the C flow is conveyed to P in a C→P 

cell. The control cells of the C solver are indicated by dashed lines, with area A and grid spacing 

DX. A cell's centre, as well as its west and east surfaces, are denoted by the letters O, W, and E, 

respectively. The main cell’s vectors (nW , nE, and nPC) have been indicated Hadji Constantine 

and Patera [3] introduced a reservoir region to impose boundary conditions on the P region. 

Particles were assigned a velocity while residing in the reservoir that was taken from a 

Maxwellian distribution with a mean and variance that matched the speed and temperature of the 

C flow at each time step. The authors smoothed the field variables produced from P at the P→C 

area using a low order polynomial in order to achieve the boundary condition for the C region. 

The boundary conditions for the P and C areas must coincide. A Schwarz alternating method-

based iterative technique was implemented that is appropriate for continuous incompressible 

flows. Liao and colleagues [4] suggested an advanced technique. When the flow exhibits 

significant gradients, this concept may be employed to reduce the P→C coupling, however at a 

significant computational expense. Liao and colleagues [4] introduced a novel Maxwell demon 

termed the reflecting particle technique to transmit momentum on the P area. The pressure 

gradient becomes an output rather than an input of the simulation, which is a disadvantage. 

Finally, Flekkoy et al. [5] incorporated mass transfer in addition to coupling through fluxes. 

Energy transfer was still prohibited, and only steady flows were taken into account. The primary 

goal of the current research is to widen the applicability of such hybrid schemes in order to 
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provide a more comprehensive description that allows mass, momentum, and energy coupling in 

unstable flows. Determining the type of information that has to be conveyed at C→P and P→C 

is a key issue. There are essentially two ways to transfer generalized forces: either local values of 

the averaged variables or fluxes of conserved quantities. The published literature has examples of 

both types of techniques. Here, in the context of energy transfer, we demonstrate that coupling 

through fluxes is required since imposing the local C values at the border of P under unstable 

flows is insufficient. Flux coupling may also have the advantage of avoiding the difficulties 

associated with dealing with fluids whose constitutive relations are unknown or only partially 

known, according to Flekkoy et al. [5]. We demonstrate that even while we concur that the flux-

based coupling is the proper matching method, the hybrid strategy fails to link the time evolution 

of both domains if the transport coefficients at C and P are sufficiently different. Therefore, in 

these situations, it is necessary for the hybrid scheme to function properly to evaluate the 

transport coefficients using normal microscopic techniques, at least for the range of densities and 

temperatures under consideration. The remainder of the essay is organized as follows. In Section 

II, the equations controlling the continuum and particle areas as well as the averaging techniques 

are provided. Sec. III presents the main ideas of the scheme, which describe the C→P coupling 

for momentum, energy, and mass fluxes. In Section IV, general criteria for the coarse-graining 

length and time scales are covered. The unstable flows where the plan has been tried. The 

particle region P and the continuum region C need to be differentiated from one another. A group 

of particles called Region P interact through predetermined interparticle potentials and move 

through time according to Newtonian dynamics. The coupling process will be demonstrated by 

using a Lennard-Jones LJ fluid. There are N(t) particles in P.  

………… [1,2] 
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where the specific energy e=u2/2+3T/2+φ f includes the translational energy, the thermal kinetic 

energy, and the potential energy f. The momentum flow contains contributions from convection 

ju and the pressure tensor П=P 1+τ, the latter including the local hydrostatic pressure P(R,t). the 

viscous stress tensor, which satisfy a Newtonian constitutive relation, as shown by previous MD 

descriptions of the LJ fluid.  

 

 
 

The energy current includes convection ρeu, dissipation Пu and conduction q, which can be 

expressed in terms of the local temperature gradients and the thermal conductivity k c , through 

Fourier’s law q=-k c.▼T(R,t). Knowing the caloric e(ρ,T) and thermal equations of state P(ρ,T), 

as well as the constitutive relations for the transport coefficients shear and bulk viscosities and 

thermal conductivity; h, j, and k c, respectively! in terms of a set of independent thermodynamic 

variables, such as r and T, is required in order to solve the aforementioned equations. The 

transport coefficients h, k c, and j were taken from Heyes [7] and Borgelt et al. [8] and the 

equations of state for a LJ fluid were taken from Johnson et al. [6]. The slower variables are 

those that are important to the C area. Using any well used solver for continuum fluid dynamics. 

 

AVERAGES: 
 

 For information to be transferred from the quicker time-scale and shorter length-scale particle 

dynamics to the slower and longer coarse-grained description, averages are required. Averages 

must be local on the slower time scale and in the coarse-grained spatial coordinates to handle 

unsettled, no equilibrium conditions. We define the following averages for any particle variable, 

let's say φi: 

 

 

 

Where the summation in Eq. [7] is made over the Nl particle sin side the cell l. The averaging 

procedure is needed to translate the P and C ‘‘languages’’ to and from each domain. This 

translation is done within the overlapping region, where the two descriptions of matter coexist ~ 

In particular, within the P→C cells, the many degrees of freedom arising from the particle 

dynamics are coarse grained to provide boundary conditions at the ‘‘upper’’ C-level. As long as 
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the number of degrees of freedom is very much larger at P than at C, this operation is rather 

straightforward and is based on the microscopic derivation of continuum fluid dynamics [9] 

 

 
 

Where NPC is the number of particles inside the P!C cell and nPC is the surface vector shown, 

By contrast, within the C!P cells, the particle dynamics must be modified to conform to the 

averaged-dynamics prescribed by the continuum description. In other words, one needs to 

construct a sort of ‘‘generalized boundary condition’’ for the particle dynamics. As pointed out 

in all previous papers on the subject [1–3,], this represents the most demanding challenge in that 

one needs to invent a way to reconstruct the microscopic dynamics of a large number of 

particles, based on only a few properties of the local continuum variables. Moreover, to ensure 

that the effect on the inner P region is minimized, it is crucial to reduce as much as possible the 

unphysical artifacts, such as Maxwell demons, which are added to the particle dynamics at 

C→P. The present work is focused on this problem, which lies at the core of any hybrid scheme. 

 

THE C\P COUPLING 

This part of the hybrid scheme can be alternatively statedmas the imposition of generalized 

~mass, momentum, and energy boundary conditions on an MD simulation box. To deal, with this 

task we have coupled the particle region to a collection of flows ~with explicit analytical 

solution!, which involves the whole set of conserved quantities exchanged, ~mass, momentum, 

and energy!. In this sense, in the present work our C-solver is not numerical but rather analytical. 

In particular, we use the initial no equilibrium state imposed at P to calculate the time-dependent 

analytical solution at C. This C-flow is then imposed on the P region during the rest of the 

simulation, meaning that apart from the initial state  the hybrid coupling used in the tests 

presented here works in one direction only ~from C to P).\ 

HYDRODYNAMIC MODES 
 

Our hybrid approach has been tested with both stationary and erratic flows, as was already 

described. We took into account common stationary nonequilibrium states such Couette profiles 

[13] and heat conduction profiles [13]. Nothing new needs to be said because the microscopic 
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reconstruction of these flows has been well researched in the literature. In passing, we mention 

that the diffusive times Lx /k and Lx /n were found to be in accord with the transient periods to 

attain the steady state from the rest solution. The remainder of the conversation will concentrate 

on our selection of unstable circumstances. They are modeled by the transverse and longitudinal 

wave decay. Now, a brief presentation of these flows using conventional hydrodynamics is 

given. Think about a fluid that is in equilibrium and has the following properties: homogenous 

mass density r e, specific energy ee, and vanishing mean velocity ue50. Our method involves 

perturbing this equilibrium state with various hydrodynamic fields and then using the C→P 

coupling technique outlined in Sec. III to check that the ensuing evolution towards equilibrium is 

carried out inside the particle area in a hydro dynamically consistent manner. If the liberalized 

mass, momentum, and energy equations (3-5) [14] are to always dominate the relaxation process, 

then the externally caused perturbations must be minimal enough to ensure that the liberalized 

hydrodynamic theory may be used. We note that instead of using ep, the energy equation is 

expressed in terms of temperature fluctuations. Also, for clarity, it is better to write the solution F 

ˆ in terms of the t50 Fourier-transformed perturbative heat density Qp and pressure Pp. These 

quantities are related to r p and Tp through the relations. 

 
RESULTS  

The arrangement depicted in Fig. 3 was used to implement and test the coupling strategy. The 

gradients of the continuum variables are set along the x direction, and the system is periodic in 

the y and z directions. The particle region is located in an area with a size of Ly=Lz along the 

periodic directions and Lx approximately x=0. To take local averages, the P area is split into 

control cells of size DX. The two C→P slabs' centers, or the outermost cells, are located at x 

x=u|Lx-X/2|u. The relative difference of the cell-averaged pressure and energy with regard to the 

values supplied by the Johnson et al. equation of state was used to measure the divergence from 

the local equilibrium assumption. Around a distance 1.5s away from the C→P interface, the 

typical maximum deviations were only about 6%. The initial perturbative flow was prepared by 

first letting the P region relax until a vanishing and homogeneous mean flow was obtained. 

Then, during a small time interval (3τ), the particle velocities were periodically changed 

according to a Maxwellian distribution with the desired velocity profile and local cell 

temperature. The resulting initial state was then analyzed to extract the Fourier components of 

the whole set of flow variables (v, r , T, e, P). For the sake of consistency these were extracted by 

Fourier transforms of the cell-averaged variables, 

\ 
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where kn=nk (n=N); and cn=1 for n=0, and cn=2 otherwise. In any case, it was checked that the 

Fourier transform of the microscopic variables f(n)=cn(I Nf(xi ,t) 3exp(2iknxi)/N yields 

essentially the same output. To determine the temporal evolution of the continuum variables, the 

initial Fourier transforms obtained from Equations. The fluxes exerted on the C→P cells over 

time were then determined using these. The literature [7,6] reported the transport coefficients 

that were employed. An intriguing test revealed that the coupling strategy dramatically failed if 

the transport coefficients utilized in the C area deviated from those of the LJ fluid by more than 

roughly 15%. In particular, the averaged particle velocity oscillated at a different frequency than 

that of C, and correlations degenerated more quickly than in the case of the C flow. Because of 

this, before using the hybrid scheme in situations where the constitutive relations are unknown, it 

is first necessary to measure the transport coefficients from the particle dynamics using any 

common molecular technique, especially if unsteady flows are to be investigated. In order to 

operate inside the hydrodynamic regime, the wavelengths of the initial perturbations were 

selected to be much bigger than the mean free path, i.e., 2πλ/k<1. In other words, there was very 

little wave number dependency on the transport coefficients. The amplitudes of the initial 

perturbation were chosen small enough to ensure that the subsequent relaxation process could be 

described by the linear theory. In particular, if v¯(1)(t) is the maximum Fourier amplitude of the 

velocity, the typical values of the Reynolds number at t50 [Re=uv¯(kn)]ρe /(kn )# were Re(0)<3. 

As uv¯
(1)(

t)u decays exponentially, convection was present only in the first stages of the relaxing 

flow, but it was not strong enough to produce significant deviations from the linear theory 

.nonlinear effects become dominant for Re.>O(10) [15].. The maximum Mach number was less 

than 0.2, and density fluctuations were around ρ¯ 
(1)

 / ρe;Ma
2
.=0.05. In another test, the hybrid 

scheme was applied to a fluid in mechanical (u50) and thermodynamically equilibrium (ρ= 0.5, 

T=3.5, e=2.7, P=3.2) during a longer simulation (50τ ) to check for any possible spurious drift in 

the overall momentum and energy note that Eq.15 ensures the mass conservation by 

construction#. During this calculation, the total momentum inside the P region was conserved up 

to, and the total energy fluctuated 5% around its equilibrium value. The size of these fluctuations 

is consistent with the system size ~which contained N=1600 particles and a specific heat of 

cv51.8). Note that the total energy of the system cannot be conserved because a part of the 

system is connected to a thermostat, and it also receives mechanical energy from C. 

Mass 

The fact that one can only theoretically exchange an integer number of particles, despite the 

continuum flux being a floating point value, is one of the primary issues with the hybrid mass 

transfer at C!P. The following steps are taken throughout each interval to ensure that the 
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continuum mass flow is maintained as nearly as possible: tC,t<tC 1DtC , tC5mDtC , mPN. The first one 

evaluates the quantity 

 

 

This floating point number, which represents the number of particles that should cross the C!P 

interface along tC,t<tC1DtC is converted into an integer d N(t) by the following construction 

 

 
Where tk is such that δ ξ (t-tk)<1 and 0=t0<tk<tk+1. The deviation δ ξ (t-tk) assimilates the errors 

made through successive rounding off (ξ→ NINT [ξ]). When δ ξ  (t-tk)u becomes larger than 1 

(at t=tk), a particle is added to ~or extracted from! d N and the corrector d j is then reset to zero. 

To minimize the effect on the remaining particles over each interval dtC , the particle crossings 

are regularly separated in time at a rate as close as possible to δ N(tC)/d tC . As illustrated in Fig. 

1, this kind of procedure enables us to follow rather closely the desired mass flux.  

 
FIG. 1. The total number of inserted particles integration dN(t8)dt8 at the rightmost C→P cell, 

along a simulation of a longitudinal wave with k=0.168 inside a region. The initial perturbative 

velocity profile was ux=0.60 cos(kx). The dashed line is the continuum prescription, Time has 

been non dimensional  with t=(σ2m/e )1/2. 

CONCLUSIONS 

We have presented the core of a hybrid continuum particle method for fluids at moderate-to-

large densities which couples mass, momentum, and energy transfers between two regions, C 

and P, described respectively by continuum fluid dynamics and by discrete particle Newtonian 
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dynamics. Both domains overlap within a coupling region divided into two sub cells which 

account for the two-way exchange: C→P and P →C. While the procedure at the P→C cell is 

simply to average the particle-based ~mass, momentum, and energy fluxes in order to supply 

open boundary conditions to the C domain, the operations at the C→P cell are much less 

straightforward as they need to reconstruct a large number of ~particles’! degrees of freedom 

only from the knowledge of the three fluxes of conserved quantities arising within C. The present 

work has been concerned with extending the C→P coupling to arbitrary rates of mass, 

momentum, and energy transfer. To this end, the proposed method has been tested under 

unsteady flows which demand conformance to the whole set of conserved variable densities. In 

particular, we have considered the set of relaxing flows arising from hydrodynamics, namely 

longitudinal and transversal waves. We have followed the idea proposed by Flekkoy et al. [5], in 

the sense that the scheme is explicitly based on direct flux exchange between the C and P 

regions. In order to deal with unsteady scenarios, we have shown that the fluxes injected into the 

particle region from the continuum region need to be measured exactly at the C→P interface and 

not at the nodes of the continuum lattice. The implementation of flux exchanges requires the 

supply of energy currents to the particle system arising from the C domain due to advection, 

dissipation, and conduction. To inject the correct amount of advected energy, the 

particleaveraged specific energy at the C→P cell needs to be equal to the continuum value. This 

can only be achieved if the new inserted particles are placed at positions where the ~interparticle! 

potential energy equals the C-specified internal energy per unit mass. This severe condition has 

been implemented by the USHER algorithm, whose purpose is twofold: to provide the correct 

mass transfer rate and to ensure the balance of energy advection. In the proposed scheme, the 

balance of energy dissipation arises naturally, provided that the cell averaged velocity and the 

injected momentum flux equal their continuum counterparts. This is made possible by applying 

the external force according to a flat distribution, instead of a biased one as used by Flekkoy et 

al. but as a result, the new particles have to be inserted within a no vanishing density 

environment. This is sorted out by the USHER in a very efficient way. Energy conduction has 

been implemented by using a set of Nose´-Hoover thermostats adjacent to the C→P interface, 

whose temperature and position are determined through the continuum local temperature 

gradient. Confirmation of the validity of this procedure is obtained from the correct rate of 

entropy production computed in our simulations of longitudinal waves. We showed that 

usingonly one thermostat per C→P cell ~i.e., providing only the local value of T but not the heat 

flux! leads to negative entropy production. Therefore, in the context of energy transfer, this result 

reinforces the central importance of coupling through fluxes proposed by Flekkoy et al. 

Investigations into improving the current plan warrant some debate here. A feedback mechanism 

that maintains the momentum flux balance may be used to regulate the number density at C→P. 

It is also important to think about different implementations for the conduction of energy. Last 

but not least, we intend to put the P→C coupling into practice alongside a 3D finite volume CFD 

solver. There will be some further challenges to overcome in order to expand the coupling 

technique to higher dimensions. The first step is to assign a mass flow to each cell in a cluster of 
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nearby C→P cells. Particles will therefore need to be put into precisely specified finite zones, 

and the insertion procedure could have to make a sacrifice to maintain mass continuity. In order 

to do this, it might be required to interpolate the external force along nearby C→P cells while 

still maintaining the local momentum flux imposed at each C→P cell. Similar to how the 

Maxwell distribution used here to determine the velocities of the new particles proved sufficient 

to guarantee momentum continuity for 1D coupling, i.e., with no neighboring C!P cells!, it may 

be convenient to use a Chapman-Enskog distribution in higher dimensions. The average velocity 

of the inserted particles can now conform to the velocity gradient along nearby C→P cells thanks 

to the latter distribution. 
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